• Title/Summary/Keyword: 선형 강성행렬

Search Result 62, Processing Time 0.024 seconds

Nonlinear Analysis Method by the Arc Length Method (Arc Length Method에 의한 비선형 문제의 해법)

  • 이대희;최종근
    • Computational Structural Engineering
    • /
    • v.9 no.3
    • /
    • pp.107-114
    • /
    • 1996
  • The performance for the algorithm of the arc length method has been examined in terms of the choice of the tangential stiffness matrix through the analysis for the snap buckling phenomenon of the arch beam. The curved beam element with 2 nodes including shear effect has been formed by strain element technique and then it has been used in this nonlinear analysis. Snap-through characteristics has been examined with respect to the ratios of the arch beam length to hight.

  • PDF

속이 찬 실린더와 평판의 접합부에 관한 연구

  • 김윤영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.12
    • /
    • pp.2241-2251
    • /
    • 1992
  • This work is concerned with the investigation of end effects of a cylinder on a structure where a circular plate is attached to a solid circular cylinder. Three-dimensional elasticity solutions are used in a cylinder whereas the classical thin plate theory is employed for a plate. The end effect of the cylinder on the flexibility and the structural response is demonstrated by several numerical examples.

A Study on the Ultimate Strength Analysis of Damaged Tubular Members (손상원통부재(損傷圓筒部材)의 최종강도(最終强度) 해석(解析)에 관한 연구(硏究))

  • Jeom-K.,Paik;Byung-C.,Shin
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.1
    • /
    • pp.24-34
    • /
    • 1990
  • In this paper, the formulation of a new simplified finite element is made to analyze the ultimate strength of damaged tubular members subjected to combined axial force and end moment. A damaged tubular member that has the bending deformation and the local dent is modeled by beam elements. Tangent elastic stiffness matrix of a beam element which contains the effect of the geometric nonlinearity is derived by using the updated Lagrangian approach. Here the contribution of the stiffness in the dented area is neglected since its resistance against the external loads is considered to be small. A fully plastic interaction curve of the element under combined loads taking account of the local dent effect is selected as a yielding criterion at each nodal point. Also tangent elasto-plastic stiffness matrix of the element is formulated by plastic node method. Comparison with the present solution and the existing experimental results is made showing that the present method gives quite an accurate solution.

  • PDF

Dynamic Nonlinear Analysis of Ocean Cables Subjected to Wave Forces (파력을 받는 해양케이블의 동적 비선형 해석)

  • 김문영;김남일;이정렬
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.4
    • /
    • pp.173-188
    • /
    • 1999
  • Kim et al.(I999) presented a non-linear finite element formulation of spatial ocean cables using multiple noded cable elements. The initial equilibrium state of ocean cables subjected to self-weights, support motions, and current forces was determined using the load incremental method and free vibration analysis were performed considering added mass, In this paper, the methods to generate regular and irregular waves and calculate wave forces due to these waves are discussed and challenging example problems are presented in order to investigate dynamic non-linear behaviors of ocean cables subjected to wave loadings.

  • PDF

A Study on Numerical Simulation for Dynamic Analysis of Towed Low-Tension Cable with Nonuniform Characteristics (불균일 단면을 갖는 저장력 예인케이블의 동적해석을 위한 수치해석적 연구)

  • 정동호
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.1
    • /
    • pp.69-76
    • /
    • 2003
  • Low-tension cables have been increasingly used in recent years due to deep-sea developments and the advent of synthetic cables. In the case of low-tension cables, large displacements may happen due to relatively small restoring forces of tension and thus the effects of fluid and geometric non-linearities and bending stiffness. A Fortran program is developed by employing a finite difference method. In the algorithm, an implicit time integration and Newton-Raphson iteration are adopted. For the calculation of huge size of matrices, block tri-diagonal matrix method is applied, which is much faster than the well-known Gauss-Jordan method in two point boundary value problems. Some case studies are carried out and the results of numerical simulations are compared with a in-house program of WHOI Cable with good agreements.

Prediction and Evaluation of Progressive Failure Behavior of CFRP using Crack Band Model Based Damage Variable (Crack Band Model 기반 손상변수를 이용한 탄소섬유강화 복합재료 적층판의 점진적 파손 거동 예측 및 검증)

  • Yoon, Donghyun;Kim, Sangdeok;Kim, Jaehoon;Doh, Youngdae
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.258-264
    • /
    • 2019
  • In this paper, a progressive failure analysis method was developed using the Hashin failure criterion and crack band model. Using the failure criterion, the failure initiation was evaluated. If the failure initiation is occurred, the damage variables at each failure modes (fiber tension & compression, matrix tension & compression) was calculated according to linear softening degradation behavior and the variables are used to derive the damaged stiffness matrix. The damaged stiffness matrix is reflected to damaged material and the progressive failure analysis is continued until the damage variables to be 1 that complete failure of material. A series of processes were performed using FE commercial code ABAQUS with user defined material subroutine (UMAT). To evaluate the proposed progressive failure model, the experimental results of open hole composite laminate tests was compared with numerical result. Using digital image correlation system, the strain behavior also was compared. The proposed numerical results were coincided well with the experimental results.

Development of Three-dimensional Approximate Analysis Method for Piled Raft Foundations (말뚝지지 전면기초의 3차원 근사해석기법 개발)

  • Cho, Jae-Yeon;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.4
    • /
    • pp.67-78
    • /
    • 2012
  • A three-dimensional approximate computer-based method, YSPR (Yonsei Piled Raft), was developed for analysis of behavior of piled raft foundations. The raft was modeled as a flat shell element having 6 degrees of freedom at each node and the pile was modeled as a beam-column element. The behaviors of pile head and soil were controlled by using $6{\times}6$ stiffness matrix. To model the non-linear behavior, the soil-structure interaction between soil and pile was modeled by using nonlinear load-transfer curves (t-z, q-z and p-y curves). Comparison with previous model and FEM analysis showed that YSPR gave similar load-displacement behaviors. Comparison with field measurement also indicated that YSPR gave a reasonable result. It was concluded that YSPR could be effectively used in analysis and design of piled raft foundations.

Element Connectivity Based Topology Optimization for Linear Dynamic Compliance (요소 연결 매개법을 이용한 선형 구조물의 동적 컴플라이언스 최적화)

  • Yoon, Gil-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.3
    • /
    • pp.259-265
    • /
    • 2009
  • This paper studies the Element Connectivity Parameterization Method(ECP method) for topology optimization considering dynamic compliance. The previous element density based topology optimization method interpolates Young's modulus with respect to design variables defined in each element for topology optimization. Despite its various applications, these element density based methods suffer from numerical instabilities for nonlinear structure and multiphysics systems. To resolve these instabilities, recently a new numerical method called the Element Connectivity Parameterization(ECP) Method was proposed. Unlike the existing design methods, the ECP method optimizes the connectivities among plane or solid elements and it shows some advantages in topology optimization for both nonlinear structure and multiphysics systems. In this study, the method was expanded for topology optimization for the dynamic compliance by developing a way to model the mass matrix in the framework of the ECP method.

Molecular Dynamics and Micromechanics Study on Mechanical Behavior and Interfacial Properties of BNNT/Polymer Nanocomposites (분자동역학 전산모사와 미시역학 모델을 이용한 질화붕소 나노튜브/고분자 복합재의 역학적 물성 및 계면특성 예측)

  • Choi, Seoyeon;Yang, Seunghwa
    • Composites Research
    • /
    • v.30 no.4
    • /
    • pp.247-253
    • /
    • 2017
  • In this study, the mechanical behavior and interface properties of boron nitride nanotube-poly(methyl methacrylate) nanocomposites are predicted using the molecular dynamics simulations and the double inclusion model. After modeling nanocomposite unit cell embedding single-walled nanotube and polymer, the stiffness matrix is determined from uniaxial tension and shear tests. Through the orientation average of the transversely isotropic stiffness matrix, the effective isotropic elastic constants of randomly dispersed microstructure of nanocomposites. Compared with the double inclusion model solution with a perfect interfacial condition, it is found that the interface between boron nitride nanotube and polymer matrix is weak in nature. To characterize the interphase surrounding the nanotube, the two step domain decomposition method incorporating a linear spring model at the interface is adopted. As a result, various combinations of the interfacial compliance and the interphase elastic constants are successfully determined from an inverse analysis.

General Theory for Free Vibration and Stability Analysis of Thin-walled Space Frames (박벽 공간뼈대구조의 자유진동 및 안정성해석을 위한 일반이론)

  • 김문영;김성보
    • Computational Structural Engineering
    • /
    • v.11 no.1
    • /
    • pp.191-204
    • /
    • 1998
  • The general formulation for free vibration and stability analysis of unsymmetric thin-wared space frames is presented in case where the shear deformation effects are neglected. The kinetic and total potential energies are derived by applying the extended virtual work principle, introducing displacement parameters defined at the arbitrarily chosen axis and including warping deformation and second order terms of finite semitangential rotations. In formulating the finite element procedure, cubic Hermitian polynomials are utilized as shape functions of the two node space frame element. Mass, elastic stiffness, and geometric stiffness matrices for the unsymmetric thin-walled section are evaluated, and load-correction stiffness matrices for off-axis distributed loadings are considered. In order to illustrate the accuracy and practical usefulness of this formulation, finite element solutions for the free vibration and stability problems of thin-walled beam-columns and space frames are presented and compared with available solutions.

  • PDF