• Title/Summary/Keyword: 선형발전기

Search Result 122, Processing Time 0.023 seconds

Pitch Control for Wind Turbine Generator System (풍력 발전시스템 피치 제어에 관한 연구)

  • Park, Jong-Hyeok;No, Tae-Su;Mun, Jeong-Hui;Kim, Ji-Eon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.12
    • /
    • pp.25-34
    • /
    • 2006
  • In this paper, a method of designing the pitch control algorithm for the wind turbine generator system (WTGS) and results of nonlinear simulation are presented. For this, the WTGS is treated as a multibody system and the blade element and momentum theory are adopted to model the aerodynamic force and torque acting the rotor blades. For the purpose of controller design, the WTGS is approximated to 1 DOF system using the fact that the WTGS is eventually a constrained multibody system. Then a classical PID controller is designed and used to regulate the rotational speed of the generator. FORTRAN based nonlinear simulation program is written and used to evaluate the performance of the proposed controller at the various wind scenario and operational modes.

A Study on Various Structural Characteristics of 100W Linear Generator for Vehicle Suspension (차량 현가장치적용 100W급 선형발전기의 다양한 구조 특성)

  • Kim, Ji-Hye;Kim, Jin-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.683-688
    • /
    • 2018
  • Recently, the demand for electric energy has been increasing due to the spread of hybrid electric vehicles. In this study, to meet this demand, the ANSYS MAXWELL electromagnetic simulation system was used to compare the power generation characteristics of three types of suspension system that can generate electricity using energy harvesting technology. Next, the optimal design was determined for each model by using the commercial PIDO (Process Integration and Design Optimization) tool, PIANO (Process Integration, Automation and Optimization). We selected three design variables and constructed an approximate model based on the experimental design method through electromagnetic analysis for 18 experimental points derived from Orthogonal Arrays among the experimental design methods. Then, we determined the optimal design by applying the Evolutionary Algorithm. Finally, the optimal design results were verified by electromagnetic simulation of the optimum design result model using the same analysis conditions as those of the initial model. After comparing the power generation characteristics for the optimal structure for each linear generator model, the maximum power generation amounts in the 8pole-8slot, 12pole-12slot, and 16pole-16slot structures were 366.5W, 466.7W and 579.7W, respectively, and it was found that as the number of slots and poles increases, the power generation increases.

Optimal Unit Commitment of Hydropower System Using Combined Mixed Integer Programming (통합혼합정수계획법 모형을 이용한 수력발전소의 최적 발전기 운영계획 수립)

  • Lee, Jae-Eung
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.5
    • /
    • pp.525-535
    • /
    • 1999
  • An optimal unit commitment model for efficient management of water and energy resources in a basin using combined mixed integer programming is developed. The combined mixed integer programming model is able to solve the inconsistency problem that may occur from mixed integer programming models. The technique which enables the use of conditional constraints and either-or constraints in the linear programming is also suggested. As a result of applying the combined mixed integer programming model to Lower Colorado River Basin in United States. the basin efficiency is decreased by 1.53% from the results of the mixed integer programming, while it is increased by 0.67% from the results of the historical operation. It is found that the decreased allowable error between power supplies and demands in the combined mixed integer programming causes the decreased basin efficiency.

  • PDF

A Tuning Method for the Power System Stabilizer of a Large Thermal Power Plant and Its Application to Real Power System : Part I-Selection of Parameters by Off-line Simulation (대형 화력발전기 전력계통 안정화장치의 정수선정 기법과 실계통 적용 : PART I-오프라인 해석을 통한 PSS 정수 선정)

  • Shin, Jeong-Hoon;Lee, Jae-Gul;Nam, Su-Chul;Choy, Young-Do;Kim, Tae-Kyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.12
    • /
    • pp.191-200
    • /
    • 2009
  • This paper, which consists of two parts, dealt with the parameter tuning of the power system stabilizer for a 612[MVA] thermal power plant in KEPCO system and its validation in field test. In Part 1 of the paper, the selection of parameters such as lead-lag time constants for phase compensation, system gain was optimized by using linear & eigenvalue analyses and they were verified through the time-domain transient stability analysis. In part 2, the performance of PSS was finally verified by the generator's on-line field test. Through the comparisons of simulation results and measured data before and after tuning of the PSS, the models of generator and its controllers including AVR, Governor and PSS used in the simulation are validated and confirmed.

A Study on Simulation-based Optimization for Wind Turbine Controller Tuning (시뮬레이션 기반의 풍력발전제어시스템 최적화 기법에 관한 연구)

  • Jeon, Gyeong-Eon;No, Tae-Soo;Kim, Guk-Seon;Kim, Ji-Yon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.503-510
    • /
    • 2011
  • This paper presents a method of optimizing the blade pitch and generator torque controllers which have been already designed for an existing wind turbine generator system. Since the highly nonlinear and uncertain characteristics of the wind turbine generator can not be fully considered in the controller design phase, some parameters such as control gains must be tuned during the field implementation phase. In this paper, nonlinear simulation software, which is based high fidelity wind turbine model, and optimization technique are effectively combined and used to tune a set of gains for the blade pitch and the generator torque controllers. Simulation results show that the baseline controllers can be effectively optimized to reduce the errors in wind turbine rotor speed and generator power output controls as well as twisting of the high and low speed shafts.

Estimation of Leg Collision Strength for Large Wind Turbine Installation Vessel (WTIV) (대형 해상풍력발전기 설치 선박(WTIV) Leg구조의 충돌 강도평가)

  • Park, Joo-Shin;Ma, Kuk-Yeol;Seo, Jung-Kwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.5
    • /
    • pp.551-560
    • /
    • 2020
  • Recently, the offshore wind power generator market is expected to grow significantly because of increased energy demand, reduced dependence on fossil fuel-based power generation, and environmental regulations. Consequently, wind power generation is increasing worldwide, and several attempts have been made to utilize offshore wind power. Norway's Petroleum Safety Authority (PSA) requires a leg-structure design with a collision energy of 35 MJ owing to the event of a collision under operation conditions. In this study, the results of the numerical analysis of a wind turbine installation vessel subjected to ship collision were set such that the maximum collision energy that the leg could sustain was calculated and compared with the PSA requirements. The current leg design plan does not satisfy the required value of 35 MJ, and it is necessary to increase the section modulus by more than 200 % to satisfy the regulations, which is unfeasible in realistic leg design. Therefore, a collision energy standard based on a reasonable collision scenario should be established.

Switching Digital Fuzzy Controller for Hybrid Generation System Using Wind and Photovoltaic Energy (풍력과 태양 에너지를 이용한 하이브리드 발전시스템 구현을 위한 스위칭 디지털 퍼지 제어기 개발)

  • Sung, Hwa-Chang;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.6
    • /
    • pp.753-758
    • /
    • 2006
  • We present the development of the digital fuzzy controller for maximum power regulation. A hybrid system that comprises wind and photovoltaic generation subsystems, and battery bank is developed in this paper. We use Takaki-Sugeno (T-S) fuzzy model to deal with the power regulation problem, since each power generator has complex nonlinear terms. The problem for regulation control can be simplified into a stabilization one. Also, in order to utilize the advanced digital device, we perform the intelligent digital redesign method. Finally, the performance of the proposed controller is extensively assessed through computer simulation.

Starting Mode Analysis of Flat-type Linear Generator for Free-Piston Engine (Free-Piston 엔진용 평판형 선형 발전기를 이용한 기동모드 해석)

  • Kim, Young-Wook;Lim, Jae-Won;Jung, Hyun-Kyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.966-971
    • /
    • 2008
  • Free-piston engine system is a new type energy converter which uses a linear motion of piston by using linear generator. In free-piston engine system, the piston is not connected to a crank-shaft. The major advantages of free-piston engine system are high efficiency and low mechanical loss from the absence of motion conversion devices. Linear generator of free-piston engine system is used as generator and starting motor. In design step, considering of back-emf and detent force characteristics for generating mode and thrust and control characteristics for starting mode is needed. In this research, generating mode of flat-type linear generator and tubular-type linear generator is analyzed by finite element analysis method and starting mode of both type linear generators is analyzed by using capability curve. Capability curve is plotted from electrical parameters of both type linear generator and motion profile is calculated from mechanical parameters.

Starting operation of a linear generator driven by a hydrogen engine (수소연소 선형 발전기의 초기 기동)

  • Jeong, Seung-Gi;Kim, Kyung-Su;Choi, Jun-Young;Oh, Si-Doek
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.110-112
    • /
    • 2008
  • A linear generator driven by a hydrogen combustion engine has been developed. Unlike rotary engine-generator systems, the linear counterpart is inherently unable to start by itself unless external force is provided for initial compression/ignition cycle. When the generator is connected to utility power lines through a bidirectional power conversion system, however, the self start-up can be done by driving the generator as a motor. This paper introduces a prototype 1kW linear hydrogen engine-generator system being developed and shows the self start-up is possible with proper motoring mode.

  • PDF

Aerodynamic Analysis of Horizontal Axis Wind Turbines using Nonlinear Bound Vortex Correction Method (비선형 구속 와류 보정법을 이용한 수평축 풍력 발전기의 공력 해석)

  • Kim, Ho-Geon;Lee, Seung-Min;Lee, Soo-Gab
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.307-310
    • /
    • 2008
  • Nonlinear Vortex Strength Correction Method is developed for improvement of vortex lattice method which can't calculate the separated flow conditions and the viscous effect. In this method, the vortex strength on the blade surface is determined by matching the lift force from vortex lattice method with the lift force from aerodynamic coefficients table as the same circulation is added to or subtracted from all chord wise vortices. For considering the nonlinearities due to the neighboring blade sections, sophisticated Newton-Rapson algorithm is applied. The validation of this method was done by comparing the simulations with the measurements on the NREL Phase-VI horizontal axis wind turbine(HAWT) in the NASA Ames wind tunnel under uniform conditions. This method gives good agreements with experiments in most cases.

  • PDF