• Title/Summary/Keyword: 선형발전기

Search Result 121, Processing Time 0.041 seconds

Design of Wave Energy Extractor with a Linear Electric Generator -Part I. Design of a Wave Power Buoy (선형발전기가 탑재된 파랑에너지 추출장치 설계 -I. 파력 부이 설계)

  • Kim, Jeong Rok;Bae, Yoon Hyeok;Cho, Il Hyoung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.2
    • /
    • pp.146-152
    • /
    • 2014
  • Design procedure of WEC (wave energy converter) using the heaving motion of a floating cylinder-type buoy coupled with LEG (linear electric generator) system is introduced. It is seen that the maximum power can actually be obtained at the optimal conditions ($c_{PTO}=b_T$, ${\omega}={\omega}_N$). Then, based on the developed theory, several design strategies are proposed to further enhance the maximum PTO (power take off), which includes the intentional mismatching with the heave natural frequency, which is 15% higher value than the peak frequency of input velocity spectrum. By using the intentional mismatching strategy, the generated power is actually increased and the corresponding draft as well as the required PTO damping value is significantly reduced, which is a big advantage in manufacturing the WEC with practical LEG (linear electric generator) system.

Wave Energy Convertor using Under-water Pressure Oscillation (해수압 진동을 이용한 파력발전 장치 개발)

  • Song, Seung-Kwan;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1332-1333
    • /
    • 2011
  • 본 논문에선 해수압 진동을 이용한 파력발전 장치에 대해 소개한다. 본 파력발전장치는 5~10m의 수심에 설치되며 파고의 변화에 따른 수압의 진동을 이용해 전기를 생산한다. 수압의 진동은 파력발전 장치 내의 피스톤을 진동시키고 이 피스톤에 연결된 선형발전기(linear permanent magnet generator)를 진동시켜 전기를 생산한다.

  • PDF

Power Conditioning System for Single Phase Linear Generation System of Free Piston Engine (자유 피스톤 엔진용 단상 선형 발전시스템을 위한 전력제어시스템)

  • Kwak, Bongwoo;Kim, Jonghoon;Kim, Myungbok
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.431-432
    • /
    • 2017
  • 본 논문은 자유 피스톤 엔진에 적용되는 단상 선형발전기용 전력제어시스템에 관한 연구이다. 자유 피스톤 엔진 선형발전시스템은 피스톤의 움직임을 구속하는 기구가 없기 때문에 기계적 마찰 손실이 적고 상사점 도달 시간이 짧아 에너지 효율측면에서 기존의 피스톤 엔진보다 유리한 기술이다. 하지만, 자유 피스톤 엔진의 경우 초기 기동 할 수 있는 동력원이 필요하며, 단상 선형 발전기의 경우 짧은 스트로크 및 낮은 속도로 인해 인덕턴스가 크게 설계 되어, 높은 인덕턴스로 인한 전류의 위상 지연으로 역률이 낮아지게 되고, 응답성이 떨어지는 문제점을 가지고 있다. 이러한 문제점을 해결하기 위해 본 논문에서는 역률 보상 및 응답성을 높일 수 있는 자유피스톤 엔진용 단상선형발진기용 전력제어시스템을 제안한다.

  • PDF

A Study on 3[kW] PMA-RSG Optimal Design for Mobile Power Supply (이동형 전원장치용 3[kW] PMA-RSG의 최적 설계에 대한 연구)

  • Baik, Jei-Hoon;Toliyat, Hamid A.;Kim, Nam-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.6
    • /
    • pp.109-117
    • /
    • 2009
  • In this paper, an analytical model using equivalent magnetic circuits for the PMA-SynRG is presented. The lumped parameter model (LPM) is developed from machine geometry, stator winding and machine operating specifications. By the LPM, magnetic saturation of rotor bridges is incorporated into model and it provides effective means of predicting machine performance for a given machine geometry. The LPM is not as accurate as finite element analysis but the equivalent magnetic circuits provide fast means of analyzing electromagnetic characteristics of PMa-SynRG. It is the main advantage to find the initial design and optimum design. The initial design of PMa_RSG is performed by LPM model and FEM analysis, and the final PMA-RSG design is optimized and identified by FEM analysis considering actual machine design. The linear LPM and the nonlinear LPM are programmed using MATLAB and all of machine parameters are calculated very quickly. To verify justification of the proposed design of PMa-RSM, back-EMF is measured.

Study on the Buoy and Vibration System in Broadband Ocean Wave Power Generator (광대역 파력발전기의 진동시스템과 부양 체에 대한 연구)

  • Lee, Hong-Chan;Yea, Kyung-Soo;Hwang, Sung-Il;Han, Ki-Bong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.780-787
    • /
    • 2012
  • In general, the ocean wave vibration power generator consists of buoy, vibration system and linear generation system. It maximized energy efficiency by using resonance phenomenon that turned to the natural frequency of vibration system and frequency of ocean wave energy. But it is difficult to obtain efficiently energy from ocean wave because the frequency of ocean wave changes from moment to moment. In this paper, we study the buoy and vibration system of ocean wave power generator to solve these problem. Firstly, we designed the buoy that gives rise to resonance between ocean wave and buoy. Secondly, we designed vibration system that is occurred to resonance between buoy and vibration system. And then the relative velocity between the buoy and magnetic of ocean wave vibration generator increases and the relative displacement between buoy and ocean wave decreases at the same time. As a result, the method which is proposed in this paper has merits not only securing its stability from harsh ocean wave environment but also obtaining more kinetic energy from ever-changing ocean wave.

Optimum Operation of Power System Using Fuzzy Linear Programming (퍼지 선형계획법을 적용한 전력계통의 최적운용에 관한 연구)

  • 박성대;정재길;조양행
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.8 no.1
    • /
    • pp.37-45
    • /
    • 1994
  • A method of optimal active and reactive power control for economic operation in electrical power system is presented in this paper. The major features and techniques of this paper are as follows: 1) The method presented for obtaining the equivalent active power balance equation applying the sparse Jacobian matrix of power flow equation instead of using B constant as active power Balance equation considering transmission loss, and for determining directly optimal active power allocation without repeating calculations. 2) More reasonable and economic profit by minimizing total fuel cost of thermal power plants instead of using transmission loss as objective function of reactive Power control can be achieved. 3) Particularly in reactive power control, computing time can be considerably reduced by using Fuzzy Linear Programming instead of using conventional Linear Programming.

  • PDF

Mechanical Characteristic Analysis of Coil Spring & Viscous Damper (Coil Spring & Viscous Damper System의 동특성분석)

  • Kim, Min-Kyu;Choun, Young-Sun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.19-26
    • /
    • 2007
  • This paper presents the results of experimental studies of the mechanical characteristics of the Coil Spring and Viscous Damper system. The Coil Spring and Viscous Damper systems were selected for the isolation of Emergency Diesel Generator (EDG) which is located in Nuclear Power Plant (NPP). The Coil Spring and Viscous Damper systems were developed for the operating vibration isolation and seismic isolation for scaled Model EDG System. The damping properties of the viscous damper changes as the variation of velocity. Through this research nonlinear damping characteristics and the effective stiffness of coil spring and viscous damper system were evaluated.

A Study on the Disk Type MHD Generator Using a Shock Tube (충격파관을 이용한 DISK형 MHD발전기에 관한 연구)

  • 배철오;신명철;김윤식;길경석
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.2
    • /
    • pp.447-453
    • /
    • 1999
  • In MHD power generation system, enthalpy of the working gas is convened to electric power directly through expansion in generator channel. It means that electric power can be generated without a moving mechanical linkage such as turbine blades. The principle of MHD generation is based on Faraday'law of induction that eletromotive force(u$\times$B) is generated when the working gas of velocity u flows a channel in which magnetic field of strength(B) exists. In this paper, helium gas seeded with cesium is used as working gas. There are two types of generator in MHD generation; linear type faraday and disk type hall generator. Rogowski coils having the bandwidth of the 100(Hz) ~ 20(kHz) were used for measuring current flowing MHD disk channel. Optimum load resistor value of the MHD generator studied was 2.5[$\Omega$]. Disk type hall generator's generation performance is the main target of this paper, which superiors to linear type Faraday generator in many points. Isentropic efficiency and enthalpy extraction rate of disk type shock tube driven hall generator is discussed here.

  • PDF

A Study on Generation Rescheduling for Line Over Load Alleviation (선로과부하 해소를 위한 발전기출력 재배분에 관한 연구)

  • 박규홍
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.8 no.5
    • /
    • pp.70-75
    • /
    • 1994
  • 본 논문은 상정사고에 기인한 선로의 과부하 해소 대책을 수립함에 있어서 가능한 한 부하차단없이 발전력재배분만으로 과부하해소를 시도하는 새로운 앨고리즘을 제시한다. 신속한 발전력 변화분을 계산하기 위하여 선로 과부하량과 상태변수($\Delta$$\theta$) 및 상태변수($\Delta$$\theta$)와 발전력 사이의 선형적인 관계를 이용하여 우선 과부하선로 양단모선 전압의 위상각 변화분을 계산하고 이에 대한 발전력 변화분을 계산하였다. 이 때 모든 Jacobian요소를 계산하지 아니하고 과부하선로 양단 모선번호에 해당하는 2열의 요소중 발전기 모선(slack 모선 제외)번호에 해당하는 행의 요소만 구함으로써 최소한의 요소를 이용하여 신속하게 계산토록 하였다.

  • PDF

The Control Strategy For Fast Response Of A Synchronous Generator Excitation System (발전기 여자시스템의 속응성 제어기법)

  • 홍현문;최재호
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.5
    • /
    • pp.62-65
    • /
    • 2000
  • This paper deals with the design and evaluation of the evaluation of the robust controller for a synchronous generator excitation system to improve the steady state and transient stability. The nonlinear characteristics of the system is treated as model uncertainties, and then the robust control techniques are introduced into the power system stability design to take into account these uncertainties at the controller design stage. The performance of the designed controller is examined by extensive non-linear time domain simulation. It is shown that the performance of the robust controller is superior to that of the conventional PI controller.

  • PDF