• Title/Summary/Keyword: 선형근사구조

Search Result 202, Processing Time 0.023 seconds

Evaluation Concept of Progressive Collapse Sensitivity of Steel Moment Frame using Energy-based Approximate Analysis (에너지 기반 근사해석을 이용한 철골모멘트골조의 연쇄붕괴 민감도 평가방법)

  • Noh, Sam-Young;Park, Ki-Hwan;Lee, Sang-Yun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.108-116
    • /
    • 2017
  • In this study, the prototype structure of seismically designed steel moment frame was analyzed statically and dynamically in order to demonstrate the applicability of energy-based approximate analysis with the dynamic effect of sudden column loss in the evaluation of the collapse resistance and a method for assessing the sensitivity to progressive collapse was proposed. For the purpose of comparing the structural behavior of buildings with different structural systems, the sensitivity of the structure to the sudden removal of vertical members can be used as a significant measure. The energy-based approximate analysis prediction for the prototype structure considered in the study showed good agreement with the dynamic analysis result. In the sensitivity evaluation, the structural robustness index that indicates the ability of a structure to resist collapse induced by abnormal loads was used. It was confirmed that the proposed methods can be used conveniently and rationally in progressive collapse analysis and design.

Discrete Optimization of Unsymmetric Composite Laminates Using Linear Aproximation Method (선형 근사화방법을 이용한 비대칭 복합 적층평판의 이산최적화)

  • 이상근;구봉근;한상훈
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.255-263
    • /
    • 1997
  • The optimum design of most structural systems used in practice requires considering design variables as discrete quantities. The present paper shows that the linear approximation method is very effective as a tool for the discrete optimum designs of unsymmetric composite laminates. The formulated design problem is subjected to a multiple in-plane loading condition due to shear and axial forces, bending and twisting moments, which is controlled by maximum strain criterion for each of the plys of a composite laminate. As an initial approach, the process of continuous variable optimization by FDM is required only once in operating discrete optimization. The nonlinear discrete optimization problem that has the discrete and continuous variables is transformed into the mixed integer programming problem by SLDP. In numerical examples, the discrete optimum solutions for the unsymmetric composite laminates consisted of six plys according to rotated stacking sequence were found, and then compared the results with the nonlinear branch and bound method to verify the efficiency of present method.

  • PDF

The Petrov-Galerkin Natural Element Method : III. Geometrically Nonlinear Analysis (페트로프-갤러킨 자연요소법 : III. 기하학적 비선형 해석)

  • Cho, Jin-Rae;Lee, Hong-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.2
    • /
    • pp.123-131
    • /
    • 2005
  • According to ow previous study, we confirmed That the Petrov-Galerkin natural element method(PG-NEM) completely resolves the numerical integration inaccuracy in the conventional Bubnov-Galerkin natural element method(BG-NEM). This paper is an extension of PG-NEM to two-dimensional geometrically nonlinear problem. For the analysis, a linearized total Lagrangian formulation is approximated with the PS-NEM. At every load step, the grid points ate updated and the shape functions are reproduced from the relocated nodal distribution. This process enables the PG-NEM to provide more accurate and robust approximations. The representative numerical experiments performed by the test Fortran program, and the numerical results confirmed that the PG-NEM effectively and accurately approximates The large deformation problem.

Fast numerical methods for marine controlled-source electromagnetic (EM) survey data based on multigrid quasi-linear approximation and iterative EM migration (다중격자 준선형 근사 및 반복적 전자탐사 구조보정법에 기초한 해양 인공송신 전자탐사 자료의 빠른 수치해석 기법)

  • Ueda, Takumi;Zhdanov, Michael S.
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.1
    • /
    • pp.60-67
    • /
    • 2008
  • In this paper we consider an application of the method of electromagnetic (EM) migration to the interpretation of a typical marine controlled-source (MCSEM) survey consisting of a set of sea-bottom receivers and a moving electrical bipole transmitter. Three-dimensional interpretation of MCSEM data is a very challenging problem because of the enormous number of computations required in the case of the multi-transmitter and multi-receiver data acquisition systems used in these surveys. At the same time, we demonstrate that the MCSEM surveys with their dense system of transmitters and receivers are extremely well suited for application of the migration method. In order to speed up the computation of the migration field, we apply a fast form of integral equation (IE) solution based on the multigrid quasi-linear (MGQL) approximation which we have developed. The principles of migration imaging formulated in this paper are tested on a typical model of a sea-bottom petroleum reservoir.

Random Vibration Analysis of Nonlinear Stochastic System under Earthquake Using Statistical Method (지진하중을 받는 비선헝 추계적 시스템의 불규칙진동해석)

  • Moon, Byung-Young;Kang, Gyung-Ju;Kang, Beom-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.6
    • /
    • pp.55-64
    • /
    • 2001
  • Industrial machines are sometimes exposed to the danger of earthquake. In the design of a mechanical system, this factor should be accounted for from the viewpoint of reliability to analyze a complex nonlinear structure system under random excitation is proposed. First, the actual random excitation, such as earthquake, is approximated to the corresponding Gaussian process for the statistical analysis. The modal equations of overall system are expanded sequentially. Then, the perturbed equations are synthesized into the overall system and solved in probabilistic way. Several statistical properties of a random process that are of interest in random vibration are evaluated in each substructure. Comparing with the results of the numerical simulation proved the efficiency of the proposed method.

  • PDF

A Method for Vibration and Sensitivity Analysis of Structure Systems with Non-linear Characteristics (비선형 특성을 가진 구조시스템의 진동과 감도해석 방법)

  • Moon, Byung-Young;Kim, Sa-Soo;Iwatsubo, Takuzo
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.4 s.35
    • /
    • pp.10-18
    • /
    • 1999
  • 본 논문에서는 대형구조물의 해석에 있어서 부분구조합성법과 섭동법을 이용하여 복잡한 비선형시스템의 해석방법을 제안하였다. 해석방법은 전체시스템을 먼저 몇 개의 분계로 분할한다. 각 분계의 운동방정식에 비선형항이 존재하여도 전체시스템의 지배적 진동모드는 선형모드라는 가정하에 이 시스템의 각 분계를 모드좌표로 변환한다. 이때, 비선형항은 근사적으로 변환한다. 그리고 섭동법을 이용하여 각 분계의 모드좌표방정식은 섭동좌수별로 정식화되어 순차적으로 구해진다. 비선형의 감도는 비선형계수로 정의되고, 그에 상응하는 강성에 의해 구해진다. 제안된 해석방법으로 비선형회전체, 비선형 베어링-페데스탈로 구성된 대형시계구조물의 진동을 해석하였다. 해석방법의 유효성을 평가하기 위해 응답의 정도와 계산소요시간을 유한요소법의 결과와 비교 분석하였다.

  • PDF

A Study on the Analysis of Plane Framework Considering Nonlinearity of Member and Rotational Stiffness of Connections Joining the Beams to the Columns (부재 비선형과 접합부의 회전강성을 고려한 골조의 해석에 관한 연구)

  • 김경수;윤성기
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.3
    • /
    • pp.319-329
    • /
    • 1999
  • 본 연구에서는 골조의 안정과 구조적인 거동에 영향을 미치는 2차 효과에 의한 기하학적 비선형 문제, 세장비가 작은 부재 단면의 소성, 보-기둥 접합부의 상태, 그리고 부재 내부에 발생되어 있는 기하학적 초기결함을 고려한 복합적인 비선형 해석프로그램을 개발하여, 철골조 구조물의 거동을 근사적으로 예측하고자 한다. 그리고, 각 비선형 해석의 신뢰성을 검증하고, 상호관계를 파악되기 위해서 각 해석에 따른 좌굴하중과 거동을 비교 검토한다.

  • PDF

A Chosen Plaintext Linear Attack On Block Cipher Cipher CIKS-1 (CIKS-1 블록 암호에 대한 선택 평문 선형 공격)

  • 이창훈;홍득조;이성재;이상진;양형진;임종인
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.1
    • /
    • pp.47-57
    • /
    • 2003
  • In this paper, we firstly evaluate the resistance of the reduced 5-round version of the block cipher CIKS-1 against linear cryptanalysis(LC) and show that we can attack full-round CIKS-1 with \ulcorner56-bit key through the canonical extension of our attack. A feature of the CIKS-1 is the use of both Data-Dependent permutations(DDP) and internal key scheduling which consist in data dependent transformation of the round subkeys. Taking into accout the structure of CIKS-1 we investigate linear approximation. That is, we consider 16 linear approximations with p=3/4 for 16 parallel modulo $2^2$ additions to construct one-round linear approximation and derive one-round linear approximation with the probability P=1/2+$2^{-17}$ by Piling-up lemma. Then we present 3-round linear approximation with 1/2+$2^{-17}$ using this one-round approximation and attack the reduced 5-round CIKS-1 with 64-bit block by LC. In conclusion we present that our attack requires $2^{38}$chosen plaintexts with a probability of success of 99.9% and about $2^{67-7}$encryption times to recover the last round key.(But, for the full-round CIKS-1, our attack requires about $2^{166}$encryption times)

Development of the Prototype of the Approximate Analytical Model Using the Neural Networks (신경망을 이용한 근사 해석 모델의 원형 개발)

  • 이승창;박승권
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.273-281
    • /
    • 1997
  • In the structural analysis, artificial neural networks as a parallel computational model that is similar to the human brain and can self-organize complex nonlinear relationships without making assumptions is introduced. The purpose of this paper is to develop the Neural Network for Approximate Structural Analysis(NNASA) to predict the behaviour of the stub-girder system. As an initial stage, the paper presents the development of the prototype of NNASA based on the problem related to the deflection of a simple beam, and shows the verification of this model by two examples.

  • PDF

Dynamic Analysis of Gimbal Structure System Including Nonlinear Elastic Rubber Vibration Isolator with Shock Acceleration (비선형 탄성 방진 고무부에 충격 가속도를 받는 짐발 구조 시스템의 동적 해석)

  • Lee, Sang Eun;Lee, Tae Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.4
    • /
    • pp.415-422
    • /
    • 2016
  • When shock acceleration is applied to a mechanical system, it may cause malfunctioning and damage to the system. Hence, to prevent these problems when developing a gimbal structure system for observation reconnaissance, the MIL-STD-810G shock standard must be satisfied as a design specification. Rubber vibration isolators are generally assembled on the base of the system in order to reduce the shock transferred from the aircraft. It is difficult to analyze the transient behavior of the system accurately, because rubber has a nonlinear load-deformation curve. To treat the nonlinear characteristic of the rubber, bilinear approximation was introduced. Using this assumption, transient responses of the system under base shock acceleration were calculated by the finite element method. In addition, experiments with a true prototype were performed using the same conditions as the analytical model. Compared with experimental data, the proposed numerical method is useful for the transient analysis of gimbal structure systems, including rubber vibration isolators with nonlinear stiffness and damping.