• Title/Summary/Keyword: 선택 함수

Search Result 1,215, Processing Time 0.024 seconds

Wavelet Neural Network and Its Application (웨이브렛 신경회로망과 응용 -적응 제어 시스템 설계를 중심으로-)

  • 전홍태;서승진;이창민
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.486-491
    • /
    • 1999
  • 본 논문에서는 웨이브렛 신경회로망을 사용하여 알려지지 않은 비선형 시스템을 안정하게 적응 제어하는 문제를 다룬다. 비선형 시스템의 정확한 제어는 함수를 근사화하는 데 사용된 함수 근사화기의 정확성과 효율성에 의존한다. 이에 비선형 시스템 제어에 기준 함수의 선택이 자유롭고 함수 근사화 능력이 뛰어난 웨이브렛 신경회로망을 사용한다. 초기 웨이브렛 신경회로망 제어기 설정은 웨이브렛 신경회로망 변수인 신축과 이동 값을 제어기 입력의 시-주파수 특성을 분석해서 구하고, 연결강도는 Lyapunov 안정성 이론에 기초한 적응 법칙을 사용하여 조절한다. 이를 비선형 시스템인 역 진자 시스템에 적용한다.

  • PDF

The software quality measurement based on software reliability model (소프트웨어 신뢰성 모델링 기반 소프트웨어 품질 측정)

  • Jung, Hye-Jung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.4
    • /
    • pp.45-50
    • /
    • 2019
  • This study proposes a method to measure software reliability according to software reliability measurement model to measure software reliability. The model presented in this study uses the distribution of Non - Homogeneous Poisson Process and presents a measure of the software reliability of the presented model. As a method to select a suitable software reliability growth model according to the presented model, we have studied a method of proposing an appropriate software reliability function by calculating the mean square error according to the estimated value of the reliability function according to the software failure data. In this study, we propose a reliability function to measure the software quality and suggest a method to select the software reliability function from the viewpoint of minimizing the error of the estimation value by applying the failure data.

Fast Simulated Annealing with Greedy Selection (Greedy 선택방법을 적용한 빠른 모의 담금질 방법)

  • Lee, Chung-Yeol;Lee, Sun-Young;Lee, Soo-Min;Lee, Jong-Seok;Park, Cheol-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.14B no.7
    • /
    • pp.541-548
    • /
    • 2007
  • Due to the mathematical convergence property, Simulated Annealing (SA) has been one of the most popular optimization algorithms. However, because of its problem of slow convergence in the practical use, many variations of SA like Fast SA (FSA) have been developed for faster convergence. In this paper, we propose and prove that Greedy SA (GSA) also finds the global optimum in probability in the continuous space optimization problems. Because the greedy selection does not allow the cost to become worse, GSA is expected to have faster convergence than the conventional FSA that uses Metropolis selection. In the computer simulation, the proposed method is shown to have as good performance as FSA with Metropolis selection in the viewpoints of the convergence speed and the quality of the found solution. Furthermore, the greedy selection does not concern the cost value itself but uses only dominance of the costs of solutions, which makes GSA invariant to the problem scaling.

A Selecting-Ordering-Mapping-Searching Approach for Minimal Perfect Hash Functions (최소 완전 해쉬 함수를 위한 선택-순서화-사상-탐색 접근 방법)

  • Lee, Ha-Gyu
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.1
    • /
    • pp.41-49
    • /
    • 2000
  • This paper describes a method of generating MPHFs(Minimal Perfect Hash Functions) for large static search key sets. The MOS(Mapping-Ordering-Searching) approach is widely used presently in MPHF generation. In this research, the MOS approach is improved and a SOMS(Selecting-Ordering-Mapping-Searching) approach is proposed, where the Selecting step is newly introduced and the Orderng step is performed before the Mapping step to generate MPHFs more effectively. The MPHF generation algorithm proposed in this research is probabilistic and the expected processing time is linear to the number of keys. Experimental results show that MPHFs are generated fast and the space needed to represent the hash functions is small.

  • PDF

A Study on Optimal Identification of Fuzzy Polynomial Neural Networks Model Using Genetic Algorithms (유전자 알고리즘을 이용한 FPNN 모델의 최적 동정에 관한 연구)

  • 이인태;박호성;오성권
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.429-432
    • /
    • 2004
  • 본 논문은 기존의 퍼지 다항식 뉴럴 네트워크 (Fuzzy Polynomial Neural Networks ; FPNN) 모델을 이용하여 비선형성 데이터에 대한 추론을 제안한다. 복잡한 비선형 시스템의 모델동정을 위하여 생성된 GMDH 방법에 기초한 FPNN의 각 노드는 퍼지 규칙을 기반으로 구축되었으며, 층이 진행되는 동안 모델 스스로 노드의 선택과 제거를 통해 최적의 네트워크 구조를 생성할 수 있는 유연성을 가지고 있다. FPNN 각각의 활성노드를 퍼지다항식 뉴론(Fuzzy Polynomial Neuron ; FPN)이라고 표현한다. FPNN의 후반부 구조는 입출력 변수 사이 의 간략과 회귀다항식 (1차, 2차, 변형된 2차식) 함수에 의해 구현된다. 규칙의 전반부 멤버쉽 함수는 삼각형과 가우시안형의 멤버쉽 함수가 사용된다. 또한 유전자 알고리즘을 사용하여 각노드의 부분표현식을 구성하는 입력변수의 수, 입력변수와 차수의 선택 동조를 통하여 최적의 Genetic Algorithms(GAs)을 이용한 FPNN모델을 설계하는 것이 유용하고 효과적임을 보인다.

  • PDF

Resonant Frequency in Rectangular Microstrip Patch Antenna on Uniaxial Substrates with Airgap (공기 갭을 갖는 일축성 매질 위의 마이크로스트립 패치 안테나의 공진 주파수)

  • 윤중한;이상목;안규철;곽경섭
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.12A
    • /
    • pp.1759-1765
    • /
    • 2000
  • 공기 갭을 갖는 일축성 기판위에 마이크로 패치 안테나의 공진 주파수가 full-wave approach와 모멘트 계산법을 이용하여 연구되었다. 일축성 매질내의 구성관계식을 통하여 제안된 구조에서의 파수영역 다이애딕 그린 함수를 유도하였으며 이 결과로부터 전계 적분 방정식을 수식화하였다. 갤러킨 모멘트법을 사용하여 전계 적분 방정식을 이산화 하였으며 기저함수의 선택은 수치 해석적 수렴을 고려하여 패치 위의 실제 전류밀도와 가장 유사한 형태인 정현적 기저함수를 선택하였다. 전사모의 실험 결과의 타당성을 검증하기 위해서 기존의 결과와 비교하여 일치된 결과를 얻었다. 공기 갭의 두께와 패치 길이, 이방성 비의 변화에 따른 공진 주파수가 제시되고 분석되었다.

  • PDF

Optimal Wavelet Selection for AR Model Parameter Identification of Nonstationary Time-Varying Signal (비정상 시변신호의 AR모델 파라메터 인식을 위한 최적의 웨이브렛 선택)

  • Shin, D.H.;Kim, S.H.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.50-57
    • /
    • 1996
  • In this paper, we proposed the method of optimal wavelet selection and wavelet expansion of AR(autoregressive) parameters by selected wavelet using F-test. A cost function is introduced as a wavelet selection method. Using this cost function, wavelets (D4 to D20) are tested to the synthesized signal. With this selected wavelet, we get the wavelet coefficients of AR parameters to both synthesized signal and real speech signal. To evaluate the proposed method, this wavelet based algorithm is compared with the Kalman filering algorithm. As a results, the proposed method shows a better performance by about 5-10dB than the Kalman filter.

  • PDF

An Alternative Parametric Estimation of Sample Selection Model: An Application to Car Ownership and Car Expense (비정규분포를 이용한 표본선택 모형 추정: 자동차 보유와 유지비용에 관한 실증분석)

  • Choi, Phil-Sun;Min, In-Sik
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.3
    • /
    • pp.345-358
    • /
    • 2012
  • In a parametric sample selection model, the distribution assumption is critical to obtain consistent estimates. Conventionally, the normality assumption has been adopted for both error terms in selection and main equations of the model. The normality assumption, however, may excessively restrict the true underlying distribution of the model. This study introduces the $S_U$-normal distribution into the error distribution of a sample selection model. The $S_U$-normal distribution can accommodate a wide range of skewness and kurtosis compared to the normal distribution. It also includes the normal distribution as a limiting distribution. Moreover, the $S_U$-normal distribution can be easily extended to multivariate dimensions. We provide the log-likelihood function and expected value formula based on a bivariate $S_U$-normal distribution in a sample selection model. The results of simulations indicate the $S_U$-normal model outperforms the normal model for the consistency of estimators. As an empirical application, we provide the sample selection model for car ownership and a car expense relationship.

Electricity Demand and the Impact of Pricing Reform: An Analysis with Household Expenditure Data (가구별 소비자료를 이용한 전력수요함수 추정 및 요금제도 변경의 효과 분석)

  • Kwon, Oh-Sang;Kang, Hye-Jung;Kim, Yong-Gun
    • Environmental and Resource Economics Review
    • /
    • v.23 no.3
    • /
    • pp.409-434
    • /
    • 2014
  • This paper estimates household demand for electricity using a micro-level household expenditure data set. A two-stage estimation method where the endogenous block price estimates are obtained from a discrete block choice model is used. This method successfully identifies a downward sloping conditional demand function with the data, while both the usual two-stage method with instrumental variable estimation and the Hewitt-Hanemann discrete-continuous model fail to do that. The paper simulates the impacts of two hypothetical pricing reforms that reduce the number of blocks and make the price gap smaller. It is shown that the reform may increase the overall consumer benefit, but is regressive.

Fast Sampling Set Selection Algorithm for Arbitrary Graph Signals (임의의 그래프신호를 위한 고속 샘플링 집합 선택 알고리즘)

  • Kim, Yoon-Hak
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1023-1030
    • /
    • 2020
  • We address the sampling set selection problem for arbitrary graph signals such that the original graph signal is reconstructed from the signal values on the nodes in the sampling set. We introduce a variation difference as a new indirect metric that measures the error of signal variations caused by sampling process without resorting to the eigen-decomposition which requires a huge computational cost. Instead of directly minimizing the reconstruction error, we propose a simple and fast greedy selection algorithm that minimizes the variation differences at each iteration and justify the proposed reasoning by showing that the principle used in the proposed process is similar to that in the previous novel technique. We run experiments to show that the proposed method yields a competitive reconstruction performance with a substantially reduced complexity for various graphs as compared with the previous selection methods.