• Title/Summary/Keyword: 선택적 촉매 환원법

Search Result 90, Processing Time 0.02 seconds

A Study on Characterization for Low Temperature SCR Reaction by $Mn/TiO_2$ Catalysts with Using a Various Commercial $TiO_2$ Support (다양한 상용 $TiO_2$ 담체를 이용한 $Mn/TiO_2$ 촉매의 저온 SCR 반응 특성 연구)

  • Kwon, Dong Wook;Choi, Hyun Jin;Park, Kwang Hee;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.190-194
    • /
    • 2012
  • 10 wt% Mn supported on various commercial $TiO_2$ catalysts were prepared by wet-impregnation method for the low temperature selective catalytic reduction (SCR) of NO with $NH_3$. A combination of various physico-chemical techniques such as BET, XRD, XPS and TPR were used to characterize these catalysts. MnOx surface densities on MnOx/$TiO_2$ catalyst were related to surface area. As MnOx surface density lowered with high dispersion, the SCR activity for low temperature was increased and the reduction temperature ($MnO_2$ ${\rightarrow}$ $Mn_2O_3$) of surface MnOx was lower. For a high SCR, MnOx could be supported on a high surface area of $TiO_2$ and should be existed a high dispersion of non-crystalline species.

Removal of Nitrogen Oxides Using Hydrocarbon Selective Catalytic Reduction Coupled with Plasma (플라즈마가 결합된 탄화수소 선택적 촉매환원 공정에서 질소산화물(NOx)의 저감)

  • Ihm, Tae Heon;Jo, Jin Oh;Hyun, Young Jin;Mok, Young Sun
    • Applied Chemistry for Engineering
    • /
    • v.27 no.1
    • /
    • pp.92-100
    • /
    • 2016
  • Low-temperature conversion of nitrogen oxides using plasma-assisted hydrocarbon selective catalytic reduction of (HC-SCR) was investigated. Plasma was created in the catalyst-packed bed so that it could directly interact with the catalyst. The effect of the reaction temperature, the shape of catalyst, the concentration of n-heptane as a reducing agent, the oxygen content, the water vapor content and the energy density on $NO_x$ removal was examined. $NO_x$ conversion efficiencies achieved with the plasma-catalytic hybrid process at a temperature of $250^{\circ}C$ and an specific energy input (SIE) of $42J\;L^{-1}$ were 83% and 69% for one-dimensional Ag catalyst ($Ag\;(nanowire)/{\gamma}-Al_2O_3$) and spherical Ag catalyst ($Ag\;(sphere)/{\gamma}-Al_2O_3$), respectively, whereas that obtained with the catalyst-alone was considerably lower (about 30%) even with $Ag\;(nanowire)/{\gamma}-Al_2O_3$ under the same condition. The enhanced catalytic activity towards $NO_x$ conversion in the presence of plasma can be explained by the formation of more reactive $NO_2$ species and partially oxidized hydrocarbon intermediates from the oxidation of NO and n-heptane under plasma discharge. Increasing the SIE tended to improve $NO_x$ conversion efficiency, and so did the increase in the n-heptane concentration; however, a further increase in the n-heptane concentration beyond $C_1/NO_x$ ratio of 5 did not improve the $NO_x$ conversion efficiency any more. The increase in the humidity affected negatively the $NO_x$ conversion efficiency, resulting in lowering the $NO_x$ conversion efficiency at the higher water vapor content, because water molecules competed with $NO_x$ species for the same active site. The $NO_x$ conversion efficiency increased with increasing the oxygen content from 3 to 15%, in particular at low SIE values, because the formation of $NO_2$ and partially oxidized hydrocarbon intermediates was facilitated.

NOx removal of Mn-Cu-TiO2 and V/TiO2 catalysts for the reaction conditions (반응조건에 대한 Mn-Cu-TiO2촉매와 V/TiO2촉매의 탈질 특성)

  • Jang, Hyun Tae;Cha, Wang Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.713-719
    • /
    • 2016
  • The NOx conversion properties of Mn-Cu-$TiO_2$ and $V_2O_5$/$TiO_2$ catalysts were studied for the selective catalytic reduction (SCR) of NOx with ammonia. The performance of the catalysts was investigated in terms of their $NOx$ conversion activity as a function of the reaction temperature and space velocity. The activity of the Mn-Cu-$TiO_2$ catalyst decreased with increasing reaction temperature and space velocity. However, the activity of the $V_2O_5$/$TiO_2$ catalyst increased with increasing reaction temperature. High activity of the Mn-Cu-$TiO_2$ catalyst was observed at temperatures below $200^{\circ}C$. H2-TPR and XPS analyses were conducted to explain these results. It was found that the activity of the Mn-Cu-$TiO_2$ catalyst was influenced by the thermal shock caused by the change of the initial reaction temperature, whereas the $V_2O_5$/$TiO_2$ catalyst was not affected by the initial reaction temperature. In the case of catalyst C, the $NO_x$ conversion efficiency decreased with increasing space velocity. The decrease in the $NO_x$ conversion efficiency with increasing space velocity was much less for catalyst D than for catalyst C.

Effect of Steam-Treated Zeolite BEA Catalyst in NH3-SCR Reaction (NH3-SCR 반응에서 스팀 처리된 zeolite BEA 촉매의 영향)

  • Park, Ji Hye;Cho, Gwang Hee;Hwang, Ra Hyun;Baek, Jeong Hun;Yi, Kwang Bok
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.145-150
    • /
    • 2020
  • Nitrous oxide (N2O) is one of the six greenhouse gases, and it is essential to reduce N2O by showing a global warming potential (GWP) equivalent to 310 times that of carbon dioxide (CO2). Selective catalytic reduction (SCR) is a technology that converts ammonia into harmless N2 and H2O by using ammonia as a reducing agent to remove NOx, one of the air pollutants; the process also produces high denitrification efficiency. In this study, the Fe-BEA catalyst was steam-treated at 100 ℃ for 2 h before Fe ion exchange in the fixed bed reactor in order to investigate the effect of the steam-treated Fe-BEA catalyst on the NH3-SCR reaction. NH3-SCR reaction test of synthesized catalysts was performed at WHSV = 180 h-1, 370 to 400 ℃ in the fixed bed reactor. The Fe-BEA(100) catalyst steam-treated at 100 ℃ showed a somewhat higher activity than the Fe-BEA catalyst at 370 to 390 ℃. The catalysts were characterized by BET, ICP, NH3-TPD, H2-TPR, and 27Al MAS NMR in order to determine the cause affecting NH3-SCR activity. The H2-TPR result confirmed that the Fe-BEA(100) catalyst had a higher reduction of isolated Fe3+ than the Fe-BEA catalyst, and that the steam treatment increased the amount of isolated Fe3+ as an active species, thus increasing the activity.

De-NOX evaluation of SCR catalysts adding vanadium-graphene nanocomposite (바나듐 담지된 그래핀 나노복합체를 첨가한 SCR 촉매의 제조 및 활성 평가)

  • Jeong, Bora;Lee, Heesoo;Kim, Eok-Soo;Kim, HongDae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.6
    • /
    • pp.252-256
    • /
    • 2015
  • Nitrogen oxides ($NO_X$) was emitted from flue gas of stationary sources and exhaust gas of mobile sources, can leads to various environments problems. Selective Catalysts Reduction (SCR) is the most effective $NO_X$ removal system. Commercial $V_2O_5-WO_3/TiO_2$ catalysts, usually containing $V_2O_5$ 0.5~3 wt%, $WO_3$ 5~10 wt%, and $V_2O_5$ is active in the reduction of $NO_X$ but also in the desired oxidation of $SO_2$ to $SO_3$. To reduce the amount of vanadium, using graphene matrix supported vanadium to synthesize nanocomposite. Then, we fabricated to 1 inch honeycomb type of SCR catalysts adding graphene-vanadium nanocomposite. The chemical-physical characteristics and the catalytic activity were performed by XRD, XRF, BET and Micro-Reactor (MR). As a result, the De-NOX performance was showed, similar to the commercial catalyst activity as 77.8 % and using nanocomposite catalyst as 77.1 % at $350^{\circ}C$.

A Study of the characteristics of NOx measurement and analysis methods of the SCR system for ships (선박용 SCR 시스템 NOx 측정 및 분석 방식의 특성 연구)

  • Kim, Sung-Yoon;Lee, Young-Ho;Kim, Min;Park, Sam-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.387-392
    • /
    • 2015
  • A method for measuring and analyzing the $NO_x$ in ships is described in $NO_x$ Technical Code 2008. The analysis device, as required by the Code, has been to use a Chemi-luminescence detection method or Heated Chemi-luminescence detection. on the other hand, selective catalytic reduction using $NH_3$ as a reducing agent has an interference effect on the analyzer, and causes measurement error. In this study, the Chemi-luminescence detection method was examined according to how it affects the concentration of $O_2$, CO, $SO_2$, $NH_3$. Fourier transform infrared spectrometry analysis equipment and measurement methods were compared. In order to confirm the effect of the physical interference of the measuring device, it was confirmed by decomposing a measuring device. Consequently, white precipitate and moisture were generated inside the chemiluminescence detection system and I found that affecting interference. The influence of interference highlights the need to consider the minimized $NO_x$ measurement method.

A development of reactor design software for De-NOx system using the selective catalytic reduction method (선택적 촉매 환원법을 이용한 De-NOx 시스템의 반응로 설계 전산프로그램 개발)

  • 정경열;오상훈;동은석;이수태;류길수
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.187-191
    • /
    • 2002
  • The exhaust gas from electric power stations, incinerators and industrial boilers contains considerable amount of harmful nitric oxide which causes air pollution. Selective catalytic reduction system with ammonia as a reductant(NH$_{3}$ SCR) have been applied to remove NOx since 1970. it is widely accepted that the NH$_{3}$ SCR process is the best method for the removal of NOx. In this paper the design of SCR reactor based on the NOx displacement is considered and the design program of SCR reactor is developed. The newly developed design program for de-NOx system maybe used in practice.

  • PDF

NOx Reduction in Flue Gas Using Ammonia and Urea solution (암모니아와 요소용액을 이용한 배출가스내 질소산화물 저감 비교 평가)

  • 임영일;이정빈;유경선;김상돈
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.05a
    • /
    • pp.236-239
    • /
    • 1995
  • 50 kW$_{th}$ 용량의 기체연료버너에서 암모니아 기체와 요소용액을 이용한 선택적 무촉매 환원법 (SNCR;Selective Non-catalytic Reduction) 으로 질소산화물 (NOx) 저감에 관하여 연구하였다. 암모니아는 요소요액보다 더 낮은 반응온도에서 더 높은 효율을 보여주지만 경제성과 암모니아의 부식성 및 맹독성으로 인하여 취급하기에 곤란한 점이 있다. 반면에 요소용액은 적절한 액상첨가제와 기상첨가제를 사용하여 넓은 반응온도범위에서 높은 효율을 얻을 수 있으며 공정상의 조업비를 절감할 수 있다. 본 실험에서는 액상 첨가제인 $CH_3$OH 와 $C_2$H$_{5}$OH 을 사용하여 5$0^{\circ}C$ 정도의 최적반응온도 감소를 얻었으며 LPG 와 합성가스(CH$_4$:CO:H$_2$:$CO_2$=1:4:4:2) 틀 기상 첨가제로 사용하여 높은 질소산화물 저감 효율을 관찰하였다.

  • PDF

An Optimization Study on a Low-temperature De-NOx Catalyst Coated on Metallic Monolith for Steel Plant Applications (제철소 적용을 위한 저온형 금속지지체 탈질 코팅촉매 최적화 연구)

  • Lee, Chul-Ho;Choi, Jae Hyung;Kim, Myeong Soo;Seo, Byeong Han;Kang, Cheul Hui;Lim, Dong-Ha
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.332-340
    • /
    • 2021
  • With the recent reinforcement of emission standards, it is necessary to make efforts to reduce NOx from air pollutant-emitting workplaces. The NOx reduction method mainly used in industrial facilities is selective catalytic reduction (SCR), and the most commercial SCR catalyst is the ceramic honeycomb catalyst. This study was carried out to reduce the NOx emitted from steel plants by applying De-NOx catalyst coated on metallic monolith. The De-NOx catalyst was synthesized through the optimized coating technique, and the coated catalyst was uniformly and strongly adhered onto the surface of the metallic monolith according to the air jet erosion and bending test. Due to the good thermal conductivity of metallic monolith, the De-NOx catalyst coated on metallic monolith showed good De-NOx efficiency at low temperatures (200 ~ 250 ℃). In addition, the optimal amount of catalyst coating on the metallic monolith surface was confirmed for the design of an economical catalyst. Based on these results, the De-NOx catalyst of commercial grade size was tested in a semi-pilot De-NOx performance facility under a simulated gas similar to the exhaust gas emitted from a steel plant. Even at a low temperature (200 ℃), it showed excellent performance satisfying the emission standard (less than 60 ppm). Therefore, the De-NOx catalyst coated metallic monolith has good physical and chemical properties and showed a good De-NOx efficiency even with the minimum amount of catalyst. Additionally, it was possible to compact and downsize the SCR reactor through the application of a high-density cell. Therefore, we suggest that the proposed De-NOx catalyst coated metallic monolith may be a good alternative De-NOx catalyst for industrial uses such as steel plants, thermal power plants, incineration plants ships, and construction machinery.

The Study on the Effect of Phosphorous Poisoning of V/W/TiO2 Catalyst According to the Addition of Sb in NH3-SCR (NH3-SCR에서 Sb 첨가에 따른 V/W/TiO2 촉매의 Phosphorous 피독 영향 연구)

  • Jung, Min Gie;Shin, Jung Hun;Lee, Yeon Jin;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.32 no.5
    • /
    • pp.516-523
    • /
    • 2021
  • A study using selective catalytic reduction (SCR) was conducted in conjunction with ammonia as a reducing agent for controlling nitrogen oxides, a typical secondary inducer of fine dust in the atmosphere. For NH3-SCR experiments, a commercial catalyst of V/W/TiO2 only and also V/W-Sb/TiO2 catalyst with Sb were used, and phosphorous durability was confirmed. As a result of NH3-SCR experiments, it was confirmed that the addition of Sb to V/W/TiO2 had durability against phosphorous. In addition, the physical and chemical properties were comparatively analyzed through BET, XPS, H2-TPR, NH3-TPD, and FT-IR analysis. From the anaylsis results, when Sb was added to V/W/TiO2 catalyst, P was also added resulting in the formation of SbPO4 and the generation of VOPO4 was suppressed. The phosphorous durability was confirmed by maintaining the redox characteristics of the catalyst before P was added.