• Title/Summary/Keyword: 선택적 촉매저감

Search Result 101, Processing Time 0.04 seconds

Effect of Co-catalyst CeO2 on NOx Reduction in PtNi/W-TiO2 Catalysts for Low-temperature H2-SCR (저온 H2-SCR용 PtNi/W-TiO2 촉매에 조촉매 CeO2가 NOx 저감에 미치는 영향)

  • Jungsoo Kim;Younghee Kim
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.313-320
    • /
    • 2023
  • In order to increase the usability of H2-SCR, the NOx removal characteristics with catalyst powder of PtNi/CeO2-W-TiO2 using Ce as a co-catalyst was synthesized and coated on a porous metal structure (PMS) were evaluated. Catalyst powder of PtNi/CeO2-W-TiO2(PtNi nanoparticles onto W-TiO2, with the incorporation of ceria (CeO2) as a co-catalysts) was synthesized and coated onto a porous metal structure (PMS) to produce a Selective Catalytic Reduction (SCR) catalyst. H2-SCR with CeO2 as a co-catalyst exhibited higher NOx removal efficiency compared to H2-SCR without CeO2. Particularly, at a 10wt% CeO2 loading ratio, the NOx removal efficiency was highest at 90℃. As the amount of catalyst coating on PMS increased, the NOx removal efficiency was improved below 90℃, but it was decreased above 120℃. When the space velocity was changed from 4,000 h-1 to 20,000 h-1, the NOx removal efficiency improved at temperatures above 120℃. It was expected that the use of the catalyst could be reduced by applying the PMS with excellent specific surface area as a support.

Low Temperature Selective Catalytic Reduction of NO with $NH_3$ over Mn/$CeO_2$ and Mn/$ZrO_2$ (Mn/$CeO_2$와 Mn/$ZrO_2$ 촉매 상에서 $NH_3$를 사용한 NO의 선택적 촉매 산화 반응)

  • Ko, Jeong Huy;Park, Sung Hoon;Jeon, Jong-Ki;Sohn, Jung Min;Lee, See-Hoon;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.105-111
    • /
    • 2012
  • Manganese (Mn) catalysts were generated using $CeO_2$ and $ZrO_2$supports synthesized by the supercritical hydrothermal method and two different Mn precursors, aimed at an application for a low-temperature selective catalytic reduction process. Manganese acetate (MA) and manganese nitrate (MA) were used as Mn precursors. Effects of the kind and the concentration of the Mn precursor used for catalyst generation on the NOx removal efficiency were investigated. The characteristics of the generated catalysts were analyzed using $N_2$ adsorption-desorption, thermo-gravimetric analysis, X-ray diffraction, and X-ray photoelectron spectroscopy. De-NOx experiments were carried out to measure NOx removal efficiencies of the catalysts. NOx removal efficiencies of the catalysts generated using MA were superior to those of the catalysts generated using MN at every temperature tested. Analyses of the catalyst characteristics indicated that the higher NOx removal efficiencies of the MA-derived catalysts stemmed from the higher oxygen mobility and the stronger interaction with support material of $Mn_2O_3$ produced from MA than those of $MnO_2$ produced from MN.

NOx Reduction in Flue Gas Using Ammonia and Urea solution (암모니아와 요소용액을 이용한 배출가스내 질소산화물 저감 비교 평가)

  • 임영일;이정빈;유경선;김상돈
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.05a
    • /
    • pp.236-239
    • /
    • 1995
  • 50 kW$_{th}$ 용량의 기체연료버너에서 암모니아 기체와 요소용액을 이용한 선택적 무촉매 환원법 (SNCR;Selective Non-catalytic Reduction) 으로 질소산화물 (NOx) 저감에 관하여 연구하였다. 암모니아는 요소요액보다 더 낮은 반응온도에서 더 높은 효율을 보여주지만 경제성과 암모니아의 부식성 및 맹독성으로 인하여 취급하기에 곤란한 점이 있다. 반면에 요소용액은 적절한 액상첨가제와 기상첨가제를 사용하여 넓은 반응온도범위에서 높은 효율을 얻을 수 있으며 공정상의 조업비를 절감할 수 있다. 본 실험에서는 액상 첨가제인 $CH_3$OH 와 $C_2$H$_{5}$OH 을 사용하여 5$0^{\circ}C$ 정도의 최적반응온도 감소를 얻었으며 LPG 와 합성가스(CH$_4$:CO:H$_2$:$CO_2$=1:4:4:2) 틀 기상 첨가제로 사용하여 높은 질소산화물 저감 효율을 관찰하였다.

  • PDF

An Optimization Study on a Low-temperature De-NOx Catalyst Coated on Metallic Monolith for Steel Plant Applications (제철소 적용을 위한 저온형 금속지지체 탈질 코팅촉매 최적화 연구)

  • Lee, Chul-Ho;Choi, Jae Hyung;Kim, Myeong Soo;Seo, Byeong Han;Kang, Cheul Hui;Lim, Dong-Ha
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.332-340
    • /
    • 2021
  • With the recent reinforcement of emission standards, it is necessary to make efforts to reduce NOx from air pollutant-emitting workplaces. The NOx reduction method mainly used in industrial facilities is selective catalytic reduction (SCR), and the most commercial SCR catalyst is the ceramic honeycomb catalyst. This study was carried out to reduce the NOx emitted from steel plants by applying De-NOx catalyst coated on metallic monolith. The De-NOx catalyst was synthesized through the optimized coating technique, and the coated catalyst was uniformly and strongly adhered onto the surface of the metallic monolith according to the air jet erosion and bending test. Due to the good thermal conductivity of metallic monolith, the De-NOx catalyst coated on metallic monolith showed good De-NOx efficiency at low temperatures (200 ~ 250 ℃). In addition, the optimal amount of catalyst coating on the metallic monolith surface was confirmed for the design of an economical catalyst. Based on these results, the De-NOx catalyst of commercial grade size was tested in a semi-pilot De-NOx performance facility under a simulated gas similar to the exhaust gas emitted from a steel plant. Even at a low temperature (200 ℃), it showed excellent performance satisfying the emission standard (less than 60 ppm). Therefore, the De-NOx catalyst coated metallic monolith has good physical and chemical properties and showed a good De-NOx efficiency even with the minimum amount of catalyst. Additionally, it was possible to compact and downsize the SCR reactor through the application of a high-density cell. Therefore, we suggest that the proposed De-NOx catalyst coated metallic monolith may be a good alternative De-NOx catalyst for industrial uses such as steel plants, thermal power plants, incineration plants ships, and construction machinery.

A Study on the Installation of SCR System for Generator Diesel Engine of Existing Ship (기존 선박의 디젤발전기용 SCR 시스템 설치에 관한 연구)

  • Ryu, Younghyun;Kim, Hongryeol;Cho, Gyubaek;Kim, Hongsuk;Nam, Jeonggil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.412-417
    • /
    • 2015
  • The IMO MEPC has been increasingly strengthening the emission standard for marine environment protection. In particular, nitrogen oxide (NOx) emissions of all ocean-going ships built from 2016 will be required to comply with the Tier-III regulation. In this study, a vanadia based SCR (Selective Catalytic Reduction) system developed for ship application was installed on a diesel engine for power generation of the training ship T/S SAENURI in Mokpo National Maritime University. For the present study, the exhaust pipeline of the generator diesel engine was modified to fit the urea SCR system. This study investigated the NOx reduction performance according to the two kind of injection method of urea solution (40%): Auto mode through the PLC (Programable Logic Control) and Manual mode. We were able to find the ammonia slip conditions when in manual mode method. So, the optimal urea injection quantity can be controlled at each engine load (25, 35, 50%) condition. It was achieved 80% reduction on nitrogen oxide. Furthermore, we found that the NOx reduction performance was better with the load up-down (while down to 25% from 50%) than the load down-up (while up to 50% from 25%) test.

Minimization of Carbon Monoxide in the High Efficient Catalytic Shift for Fuel Cell Applications (연료전지용 고효율 촉매전이 반응의 일산화탄소 저감)

  • Park, Heon;Kim, Seong-Cheon;Chun, Young-Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.5
    • /
    • pp.528-532
    • /
    • 2007
  • The generation of high-purity hydrogen from hydrocarbon fuels is essential for efficient operation of fuel cell. In general, most feasible strategies to generate hydrogen from hydrocarbon fuels consist of a reforming step to generate a mixture of $H_2$, CO, $CO_2$ and $H_2O$(steam) followed by water gas shift(WGS) and CO clean-up steps. The WGS reaction that shifts CO to $CO_2$ and simultaneously produces another mole of $H_2$ was carried out in a two-stage catalytic conversion process involving a high temperature shift(HTS) and a low temperature shift(LTS). In the WGS operation, gas emerges from the reformer is taken through a high temperature shift catalyst to reduce the CO concentration to about $3\sim4%$ followed to about 0.5% via a low temperature shift catalyst. The WGS reactor was designed and tested in this study to produce hydrogen-rich gas with CO to less than 0.5%.

Reduction of NO Emissions from Diesel Combustion using a Catalytic Filter Reactor (촉매 필터 반응기를 이용한 경유연소 배가스 내의 NO저감)

  • 김지용;이상권;한영욱
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.11a
    • /
    • pp.257-258
    • /
    • 2000
  • 산업 발전에 따른 대기오염물질의 배출로 인한 대기오염은 날로 심각해지고 있다. 대기오염물질중 NO는 제어에 대한 관심이 높아지고 있는데 NOx의 배연 처리 기술중 가장 보편화되어 있는 기술은 선택적 촉매 환원법(selective catalytic reduction, SCR)이다. 그중 암모니아(NH$_3$)를 환원제로 사용한 SCR법이 가장 널리 사용되고 있는데 이러한 NH$_3$에 의한 탈질공정은 미반응 NH$_3$의 배출, 경제성 등의 문제점이 있어 다른 환원제 즉 urea나 hydrocarbon을 사용하는 탈질기술의 개발이 요구되고 있으며, 특히 hydrocarbon이나 alcohol 계열을 이용한 SCR법에 대한 연구가 활발하게 진행되고 있다. (중략)

  • PDF

Removal of NOx by Selective Catalytic Reduction Using Ceramic Foam Supports (SCR반응에서 세라믹 폼 지지제를 이용한 NOx 제거)

  • 한요섭;김현중;박재구
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.141-142
    • /
    • 2003
  • 최근 자동차 수요증가 및 산업용 보일러 둥 급증하는 추세이며 이로 인한 대도시 대기오염 문제는 위험수위에 도달해 있다. 이러한 산업용 보일러, 화력발전소등 고정배출원과 자동차에서 발생하는 배기가스에는 인체에 유해한 일산화탄소(CO), 질소산화물(NOx), 황산화물(SOx)등이 다량 함유되어 있다. 유독성 가스중 질소산화물(NOx) 저감방법에는 특히 선택적 촉매환원법(Selective Catalytic Reduction, SCR)이 가장 널리 적용되고 있다. SCR법은 촉매하에서 NH$_3$, CO, 탄화수소(메탄, 에탄올, 프로판 등)의 환원제를 사용하여 NOx를 $N_2$로 전환하시키는 기술이다. (중략)

  • PDF

A Study on the Synthesis of $\textrm{TiO}_2$for Catalyst Carrier from $\textrm{TiOSO}_4$ and $\textrm{TiO(\textrm{SO}_4)_2$Solutions ($\textrm{TiOSO}_4$$\textrm{TiO(\textrm{SO}_4)_2$용액으로부터 촉매 담체용 $\textrm{TiO}_2$합성에 관한 연구)

  • Yu, Yeon-Tae;Choe, Yeong-Yun;Kim, Byeong-Gyu;Nam, Cheol-U;An, Byeong-Guk
    • Korean Journal of Materials Research
    • /
    • v.9 no.11
    • /
    • pp.1062-1068
    • /
    • 1999
  • 고정원으로부터 배출되는 질소산화물의 저감 기술 중에서 선택적 촉매 환원법(SCR법)은 가장 경제적이고 효율적인 방법으로 알려져 있다. 이 SCR 촉매의 탈질능을 향상시키기 위하여,$ TiOSO_4$ 및 Ti($SO_4$)$_2$용액으로부터 비표면적이 넓은 $TiO_2$의 비표면적 및 결정구조에 미치는 영향과 이들의 상관관계에 대하여 조사하였다. $TiOSO_4$용액으로부터 합성한 $TiO_2$의 최대 비표면적은 $382\m^2$/g이었고, Ti($SO_4$)$_2$용액으로부터 합성한 $TiO_2$의 최대 비표면적은 $335\m^2$/g이었으며, $TiO_2$는 비정질 형태의 결정구조를 보였다. 하소처리에 의해 비정질 $TiO_2$는 결정화되었고, 결정 중에 함유되어 있는 불순물은 $TiO_2$의 결정화를 억제하였다.

  • PDF

A Study of the Reduction of Diesel-Engine Emissions for Off-Road Vehicles (비도로 차량용 디젤엔진의 배기가스 저감에 관한 연구)

  • Cho, Gyu-Baek;Kim, Hong-Suk;Kang, Jeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.6
    • /
    • pp.577-583
    • /
    • 2011
  • To meet the requirements of the Tier 4 interim regulations for off-road vehicles, emissions of particulate matter (PM) and nitrogen oxides (NOx) must be reduced by 95% and 30%, respectively, compared to current regulations. In this research, both the DPF and HPL EGR systems were investigated, with the aim of decreasing the PM and NOx emissions of a 56-kW off-road vehicle. The results of the experiments show that the DOC-DPF system is very useful for reducing PM emissions. It is also found that the back pressure is acceptable, and the rate of power loss is less than 5%. By applying the HPL EGR system to the diesel engine, the NOx emissions under low- and middle-load conditions are reduced effectively because of the high differential pressure between the turbocharger inlet and the intake manifold. The NOx emissions can be decreased by increasing the EGR rate, but total hydrocarbon (THC) emission increases because of the increased fuel consumption needed to compensate for the power loss caused by EGR and DPF.