Browse > Article

Low Temperature Selective Catalytic Reduction of NO with $NH_3$ over Mn/$CeO_2$ and Mn/$ZrO_2$  

Ko, Jeong Huy (Graduate School of Energy and Environmental System Engineering, University of Seoul)
Park, Sung Hoon (Department of Environmental Engineering, Sunchon National University)
Jeon, Jong-Ki (Department of Chemical Engineering, Kongju National University)
Sohn, Jung Min (Department of Mineral Resources and Energy Engineering, Chonbuk National University)
Lee, See-Hoon (Department of Mineral Resources and Energy Engineering, Chonbuk National University)
Park, Young-Kwon (Graduate School of Energy and Environmental System Engineering, University of Seoul)
Publication Information
Applied Chemistry for Engineering / v.23, no.1, 2012 , pp. 105-111 More about this Journal
Abstract
Manganese (Mn) catalysts were generated using $CeO_2$ and $ZrO_2$supports synthesized by the supercritical hydrothermal method and two different Mn precursors, aimed at an application for a low-temperature selective catalytic reduction process. Manganese acetate (MA) and manganese nitrate (MA) were used as Mn precursors. Effects of the kind and the concentration of the Mn precursor used for catalyst generation on the NOx removal efficiency were investigated. The characteristics of the generated catalysts were analyzed using $N_2$ adsorption-desorption, thermo-gravimetric analysis, X-ray diffraction, and X-ray photoelectron spectroscopy. De-NOx experiments were carried out to measure NOx removal efficiencies of the catalysts. NOx removal efficiencies of the catalysts generated using MA were superior to those of the catalysts generated using MN at every temperature tested. Analyses of the catalyst characteristics indicated that the higher NOx removal efficiencies of the MA-derived catalysts stemmed from the higher oxygen mobility and the stronger interaction with support material of $Mn_2O_3$ produced from MA than those of $MnO_2$ produced from MN.
Keywords
De-NOx; SCR; Mn/$CeO_2$; Mn/$ZrO_2$; hydrothermal synthesis in supercritical water;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. H. Ko, S. H. Park, J. K. Jeon, S. S. Kim, S. C. Kim, J. M. Kim, D. Chang, and Y. K. Park, Catal. Today, in press.
2 J. S. Cha, J. C. Choi, J. H. Ko, Y. K. Park, S. H. Park, K. E. Jeong, S. S. Kim, and J. K. Jeon, Chem. Eng. J., 156, 321 (2010).   DOI
3 Y. B. Jo, J. S. Cha, J. H. Ko, M. C. Shin, S. H. Park, J. K. Jeon, S. S. Kim, and Y. K. Park, Korean J. Chem. Eng., 28, 106 (2011).   DOI
4 G. Marban, R. Antuna, and A. B. Fuertes, Appl. Catal. B: Environ., 41, 323 (2003).   DOI
5 E. G. Bordeje, A. Monzon, M. J. Lazaro, and R. Moliner, Catal. Today, 102, 177 (2005).
6 K. H. Kim, J. R. Kim, and S. K. Ihm, J. Hazard. Mater., 167, 1158 (2009).   DOI
7 G. S. Qi, R. T. Yang, and R. Chang, Appl. Catal. B: Environ., 51, 93 (2004).   DOI
8 M. Machida, M. Uto, and T. Kijima, Stud. Surf. Sci. Catal., 143, 855 (2000).
9 Y. J. Kim, H. J. Kwon, I. S. Nam, J. W. Choung, J. K. Kil, H. J. Kim, M. S. Cha, and G. K. Yeo, Catal. Today, 151, 244 (2010).   DOI
10 Z. Wu, B. Jiang, and Y. Liu, Appl. Catal. B: Environ., 79, 347, (2008).   DOI
11 D. A. Pena, B. S. Uphade, and P. G. Smirniotis, J. Catal., 221, 421 (2004).   DOI
12 J. Li, J. Chen, R. Ke, C. Luo, and J. Hao, Catal. Commun., 8, 1896 (2007).   DOI
13 C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, and G. E. Mullerberg, Handbook of X-ray Photoelectron Spectroscopy, Eden Prairie (1979).
14 P. R. Ettireddy, N. Ettireddy, S. Mamedov, P. Boolchand, and P. G. Smirniotis, Appl. Catal. B: Environ., 76, 123 (2007).   DOI
15 K. Kapteijn, L. Singoredjo, A. Andreini, and J. A. Moulijn, Appl. Catal. A: Gen., 3, 173 (1994).   DOI