• Title/Summary/Keyword: 선체 청소로봇

Search Result 5, Processing Time 0.019 seconds

Development of a drive control system of a hull cleaning robot reflecting operator's convenience (작업자 편의를 반영한 선체 청소로봇의 주행 제어시스템 개발)

  • Kang, Hoon;Oh, Jin-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.391-398
    • /
    • 2013
  • Fuel consumption in a vessel can be reduced by a hull cleaning which has been performed by the industrial robot. It is most important to attach safely and travel on the hull surface for a hull cleaning robot. In this study, therefore, we have developed a drive control system of the hull cleaning robot that enables a stable drive. In addition, operator's conveniences were reflected on the drive control system for comfort robot operation. Through a drive control experiments conducted at a hull test-bed, we demonstrated the drive control performance and conveniences of the developed drive control system.

Development and Performance Evaluation of Hull Blasting Robot for Surface Pre-Preparation for Painting Process (도장전처리 작업을 위한 블라스팅 로봇 시스템 개발 및 성능평가)

  • Lee, JunHo;Jin, Taeseok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.5
    • /
    • pp.383-389
    • /
    • 2016
  • In this paper, we present the hull blasting machine with vision-based weld bead recognition device for cleaning shipment exterior wall. The purpose of this study is to introduce the mechanism design of the high efficiency hull blasting machine using the vision system to recognize the weld bead. Therefore, we have developed a robot mechanism and drive controller system of the hull blasting robot. And hull blasting characteristics such as the climbing mechanism, vision system, remote controller and CAN have been discussed and compared with the experimental data. The hull blasting robots are able to remove rust or paint at anchor, so the re-docking is unnecessary. Therefore, this can save time and cost of undergoing re-docking process and build more vessels instead. The robot uses sensors to navigate safely around the hull and has a filter system to collect the fouling removed. We have completed a pilot test of the robot and demonstrated the drive control and CAN communication performance.

Position estimation method based on the optical displacement sensor for an autonomous hull cleaning robot (선체 청소로봇 자동화를 위한 광 변위센서 기반의 위치추정 방법)

  • Kang, Hoon;Ham, Youn-jae;Oh, Jin-seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.2
    • /
    • pp.385-393
    • /
    • 2016
  • This paper presents the new position estimation method which contains the optical displacement sensor and the dead reckoning based position estimation algorithm for automation of hull cleaning robot. To evaluate feasibility of the proposed position estimation method on the hull cleaning robot, it was applied on the small scale robot model which has an identical drive method with the hull cleaning robot and then a set of the position estimation experiments were performed. The experimental results of the position estimation demonstrate that the estimated results with the optical displacement sensors is more accurate than used rotary encoder method. In addition, it continuously calculated the robot position quite close to the real robot driving path. In a follow-up study, the proposed position estimation method will be complemented and exploited on the actual hull cleaning robot by adding additional sensor modules that correct measurement errors.

Development of Cleaning Module and Operating System of Underwater Robot for Ship Hull Cleaning (선저 청소용 수중로봇의 청소 모듈 및 제어 시스템 개발)

  • Choi, Hyeung-Sik;Kwon, Kyoung-Youb;Chung, Koo-Rack;Seo, Joo-No;Kang, Hyung-Suk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.553-561
    • /
    • 2009
  • This paper presents development of ROV-type underwater robot capable of cleaning ship hull in automatic mode. The purpose of developing this robot is for underwater cleaning to secure the safety of divers who inspect and clean the ship hull. The robot consists of the cleaning system with rotating brush mechanism, a car-like driving mechanism, inspection system using video, and overall control system for underwater communication and operation. In this paper, we present overall design process of the cleaning system and operating system and technical contents of the overall control system for the underwater cleaning robot.