• 제목/요약/키워드: 선박용 연료전지

Search Result 33, Processing Time 0.02 seconds

A Study on the Forecast of Marine Fuel Cell Market (선박용 연료전지 시장 전망에 관한 연구)

  • Park, Han-Woong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.8
    • /
    • pp.1212-1221
    • /
    • 2010
  • Recently, various types of ships are facing with a challenge to adopt the high efficient and environment-friendly power generating systems. For the reduction of exhaust emissions, improvement of thermal efficiency, and lowering the noise and vibration levels, fuel cells are gaining the much more interests. This paper projects the future marine fuel cell market on the basis of considering the historical world shipbuilding and marine engine market. To do this, the number of total ship is, at first, obtained by forecasting the number of annual new shipbuilding orders and completions. Finally, fuel cell market is forecasted by obtaining the engine capacity for annual world total number of ships and engine orders.

Analysis of International Standardization Trend for the Application of Fuel Cell Systems on Ships (선박용 연료전지 시스템 도입을 위한 국제 표준화 동향 분석)

  • Park, Sang-Kyun;Youn, Young-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.5
    • /
    • pp.579-585
    • /
    • 2014
  • For the application of fuel cell systems on ship which is future eco-friendly ship technology, it is need that the modification of relevant laws and regulations with relevant technical development. This paper reviews the trend of fuel cell development, SOLAS and IACS UR/UI as a international regulations, international standardization trend such as IMO MEPC, IMO BLG and major classification rules, the consideration for the standard development of ship fuel cell systems, the implications for application of fuel cell systems on ships in Korea. The IGF Code which is developing in the IMO included fuel cell, and thus Korean government and related company should participate in the codification. The analysis of development of IMO's relevant regulations also needed for the preparations.

Thermodynamic Analysis on Steam Reforming of Hydrocarbons and Alcohols for Fuel Cell System (연료전지시스템을 위한 탄화수소 및 알코올 연료의 수증기 개질 특성에 관한 열역학적 연구)

  • Oh, Jin-Suk;Lee, Kyung-Jin;Kim, Sun-Hee;Oh, Sae-Gin;Lim, Tae-Woo;Kim, Jong-Su;Park, Sang-Kyun;Kim, Mann-Eung;Kim, Myoung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.388-396
    • /
    • 2011
  • The strengthened regulations for atmospheric emissions from ships have caused a necessity of new, alternative power system in ships for the low pollutant emissions and the high energy efficiency. Recently, new kinds of propulsion power system such as fuel cell system, which use hydrogen as an energy source, have been sincerely considered. Fuel conversion system to hydrogen is an essential part for fuel cell ship. We have investigated thermodynamically the steam reforming characteristics of hydrocarbons and alcohols for the fuel conversion systems.

Implementation of Fuel Cell Simulator for Ship Using the Programmable Power Supply (전력공급장치를 이용한 선박용 연료전지 시뮬레이터의 구현)

  • Park, Do-Young;Oh, Jin-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1117-1122
    • /
    • 2012
  • In order to study to apply the fuel cell, the study about the power system design and the load control is needed. However, to experiment the fuel cell need the auxiliary device and the complex control technology. For this reason the simulator is needed and such study is in progress actively. In this paper, the PEMFC (Polymer Electrolyte Membrane Fuel Cell) that is applied the vehicle, the small sized ship was simulated based on LabVIEW. The characteristic of fuel cell simulator was implemented based on a simulation data using the programmable power supply. The I-V characteristic according to various factors and the polarization curve of fuel cell were analysed.

A study on temperature characteristic of the gases supplied to SOFC system by utilizing the ship exhaust gas (선박 배기가스 활용에 따른 SOFC 시스템 공급가스의 온도특성에 관한 연구)

  • Park, Sang-Kyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.822-828
    • /
    • 2013
  • Since the operating temperature of Solid Oxide Fuel Cell (SOFC) is high, the heat management of the gases supplied to fuel cell system is important. In this paper, the temperature characteristic of the gases supplied to the anode and the cathode of the fuel cell is studied in case of utilizing the waste heat contained in the ship exhaust gas as a heat source to heat up the fuel, gas and water supplied to a 500kW SOFC system for a ship power. For the fuel cell system proposed in this paper, the temperature of gases supplied to the anode and the cathode was the highest temperature at 963K when the exhaust gas of the fuel cell was utilized as the heat source for gases supplied to fuel cell system instead of utilizing the ship exhaust gas. In addition, the engine power did not effect on the temperature of gases supplied to the fuel cell stack.

A Study on Thermal Management of Stack Supply Gas of Solid Oxide Fuel Cell System for Ship Applications (선박 전원용 고체산화물형 연료전지(SOFC) 시스템의 스택 공급 가스의 열관리 문제에 관한 연구)

  • Park, Sang-Kyun;Kim, Mann-Eung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.765-772
    • /
    • 2011
  • In this research, the fuel cell system model capable of generating codes in real time was developed to construct of a HIL (Hardware-In-the-Loop) for a SOFC-powered ship. Moreover, the effects of the distribution of the exhaust gas flow rates in a stack, the flow rates of fuels and temperature of air supplied on the temperature characteristics of fuels supplied to the cathode and the anode, the output power of the stack and system efficiency are examined to minimize the temperature difference between fuels supplied to the stack used in a 500kW SOFC system using methane as a fuel. As a result, the temperatures of fuels supplied to the cathode and the anode maintain at 830K when the opening factor of three-way valve located at outlet of turbine is 0.839. Also the process for optimization of methane flow rate considering the fuel cell stack and system efficiency is required to increase the temperatures of fuels supplied to the stack.

A Study on Performance of Solid Oxide Fuel Cell Stack for Ship Applications (선박 전원용 고체산화물형 연료전지(SOFC) 스택 성능에 관한 연구)

  • Park, Sang-Kyun;Kim, Young-Jin;Roh, Gill-Tae;Kim, Mann-Eung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.406-413
    • /
    • 2011
  • Recently the fuel cell has been spotlighted as a technology to reduce greenhouse gases emission from a ship. In this research, internal reforming 500kW solid oxide fuel cell stacks fueled by methane for a ship were developed. Characteristics of power and efficiency depending on the number of cells in the stack, hydrogen conversion ratio, and active area of the cell are evaluated. Also the effects of air and methane supplying conditions on performance are analyzed. As a result, as the number of cells, hydrogen conversion ratio, active area of the cell, or supplied air flow rate increase, the stack power and efficiency increase. When the methane flow rate increases, the power increases. However the efficiency decreases. In addition, the case at the current of 976.4 A, voltage of 529.1 V, with corresponding power of 516.6 kW shows that the efficiency of fuel cell stack is 42.91%.

A Study on Performance of Solid Oxide Fuel Cell System for Ship Applications (선박 전원용 고체산화물형 연료전지(SOFC) 시스템 성능에 관한 연구)

  • Park, Sang-Kyun;Roh, Gill-Tae;Kim, Mann-Eung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.582-589
    • /
    • 2011
  • The fuel cell technology has been considered as a technology to reduce greenhouse gases emission from a ship. In this research, internal reforming 500kW solid oxide fuel cell system fueled by methane for a ship were developed. Characteristics of gas temperature, stack power and system efficiency depending on the air flow rate, $CH_4$ flow rate, $H_2O$ flow rate, and system operation pressure are evaluated. As a result, air and $CH_4$ flow rate directly affect the temperature of inlet and outlet gas in the fuel cell stack. When the air and $H_2O$ flow rate increase, the stack power and system efficiency increases. However, the case of $CH_4$ flow rate increase, the efficiency decreases.

Performance Analysis of Marine Solid Oxide Fuel Cell and Gas Turbine Hybrid Power System (under Conditions of Turbine Cooling and Constant Temperature in Cathode Inlet) (선박동력용 SOFC/GT 하이브리드시스템의 성능 평가 (터빈 냉각 및 공기극 입구온도 일정 조건을 중심으로))

  • Lim, Tae-Woo;Kil, Byung-Lea;Kim, Jong-Su;Oh, Sae-Gin;Park, Sang-Kyun;Kim, Mann-Eung;Kim, Myoung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1107-1115
    • /
    • 2009
  • The strengthened regulations for atmospheric emissions from ships like MARPOL Annex VI have caused a necessity of new, alternative power system in ships for the low pollutant emissions and the high energy efficiency. This paper attempts to investigate the configuration of SOFC/GT hybrid power system for marine applications like LNG tanker and to analyze the influence of design parameters on the system performance. The simulation results provide the basic data for the design and efficiency improvement of SOFC/GT hybrid system and indicate the guidelines for the safe system operation.