• Title/Summary/Keyword: 선박디젤엔진

Search Result 206, Processing Time 0.029 seconds

Improvement of the performance and emission in a four-stroke diesel engine using fuel additive (4행정 디젤엔진에 연료첨가제 사용에 따른 성능 및 배기배출물 개선에 관한 연구)

  • Ryu, Younghyun;Lee, Youngseo;Nam, Jeonggil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.762-767
    • /
    • 2016
  • High thermal efficiency and the ability to use various types of fuel are a few of the many advantages of diesel engines. However, a major disadvantage is that their exhaust emissions are more harmful to humans and the environment than that of conventional engine. Consequently, the provisions of the international emissions standards for diesel engine equipped passenger cars, commercial vehicles, and ships have become more stringent. These standards include the EU Euro 6, the IMO MEPC Tier 3, and the US EPA Tier 4. Ryu et al. published a study that applied fuel additives to two-stroke diesel engines. In this study, a four-stroke diesel engine using diesel oil for a generator is utilized as the test subject, and an experiment is performed to verify whether fuel additive can be used to improve performance and exhaust emissions. In addition, this experimental study presents research results for the application of fuel additives in both two-stroke and four-stroke diesel engines. The experimental results were compared and analyzed by placing an oil-soluble calcium-based organometallic compound in diesel oil. The results confirmed that the addition of fuel additive improved the performance (fuel consumption rate, exhaust gas temperature) and exhaust emissions (NOx, CO) of the diesel engine.

Design of a Control System for the Emergency Diesel Generator (비상용 디젤발전기 제어시스템 설계)

  • Kim, Jin-ae;Joo, Jae-hun;Baek, Pan-Geun;Kim, Byeong-Jun;Choi, Jung-Keyng
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.849-853
    • /
    • 2009
  • A generator is in use for a moving vehicle like car, aircraft, ship as well as key industry including a thermal power plant, a water power plant, a nuclear power plant, and so on. Such the AC generator plays an important role in vehicle, ship, aircraft, and so forth, at the point of generating electric power. Especially in the matter of the ship, the emergency generator system is mounted to provide against malfunction of main generator on a voyage. So, it is ordered that the system can monitor the main generator and operate the emergency generator when the emergency happens. This study is about controller for the emergency diesel engine generator and design of a various software.

  • PDF

Study on the Change of Physical Characteristics by Polarity and Additives of SiC DPF Binder for Diesel Engine Application (디젤엔진에 적용하기 위한 SiC DPF용 접합제의 극성 및 첨가물에 따른 물리적 특성 변화에 관한 연구)

  • Kim, Jinwon;Ryu, Younghyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.974-981
    • /
    • 2019
  • Fine dust has become a significant social problem. Diesel engines are used as the main propulsion power source in ships. This study introduces a diesel particulate filter (DPF) that is used as an exhaust after-treatment system for diesel engines to reduce particulate matter known as diesel fine dust. Two materials are used for the DPF: Cordierite and silicon carbide (SiC). In this study, to improve the physical properties of the binder used in the SiC DPF, cordialite was used instead of the SiC-based materials used as the conventional binder to evaluate the thermal durability against high-temperature deformation through the change of the coefficient of thermal expansion. In addition, the physical properties of the silica sol, as a main component of the base coating solution for determining the bond between the binder and the segment, were confirmed. Based on this, the change effect of the binder physical properties was confirmed through experiments by either adding a silane coupling agent or SiC to increase the reactivity of the silica sol.

Predictions of the deteriorating performance for the marine diesel engines (선박용 디젤기관의 열화성능 예측에 관한 연구)

  • Jung, Chan-Ho;Rho, Beom-Seuk;Lee, Ji-Woong;Choi, Jae-Sung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.47-52
    • /
    • 2013
  • The higher energy efficiency for ship and the lower pollution for global environment are required strictly. However the performance of marine diesel engine is gradually deteriorated with time. And also the operation condition is varied with sea conditions. Hence the optimization for operating condition of marine engines is needed for energy saving and environment kindly. In this paper, it was attempted to investigate the influence of aging for marine diesel engine. The deterioration of engine performance is assessed by the calculation results of the simulation program for two-stroke marine diesel engine developed by author which was reported before. And three parameters for deterioration of engine performance were considered such as lower efficiency of turbocharger by fouling, increase of blow-by gas due to wear of cylinder liner and getting worse of combustion by poor injection. By the results, it was shown that the influence of engine performance by aging was relatively not so small - 10.4 bar low in Pmax and 3.2% decrease in Pmi.

Transient Torsional Vibration Response due to Ice Impact Torque Excitation on Marine Diesel Engine Propulsion Shafting (선박용 디젤엔진 추진축에서 빙 충격 토크 기진에 의한 과도 비틀림 진동 응답)

  • Barro, Ronald D.;Eom, Ki Tak;Lee, Don Chool
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.5
    • /
    • pp.321-328
    • /
    • 2015
  • In recent years, there has been an increasing demand to apply the new IACS(International Association of Classification Societies) standards for ice and polar-classed ships. For ice-class vessel propulsion system, the ice impact torque design criterion is defined as a periodic harmonic function in relation to the number of the propeller blades. However, irregular or transient ice impact torque is assumed to occur likely in actual circumstances rather than these periodic loadings. In this paper, the reliability and torsional vibration characteristics of a comparatively large six-cylinder marine diesel engine for propulsion shafting system was examined and reviewed in accordance with current regulations. In this particular, the transient ice impact torque and excessive vibratory torque originating from diesel engine were interpreted and the resonant points identified through theoretical analysis. Several floating ice impacts were carried out to evaluate torque responses using the calculation method of classification rule requirement. The Newmark method was used for the transient response analysis of the whole system.

The Resonance of Marine Propulsion Shaft System excited by Diesel Engine (디젤엔진의 가진에 의한 선박용 추진 축계의 공진)

  • Lee, D.C.;Kang, B.Y.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.248-253
    • /
    • 2009
  • The propulsion system which apply the diesel engine with reduction gear as prime mover, generally installs the elastic coupling between engine and intermediate shaft, This coupling can isolate the vibratory torque excited by diesel engine, or the excess transient torque and moment occurring by external impact. So, diesel engine and reduction gear can safely operate by elastic coupling. Unfortunately, the elastic coupling for skimmer vessel was repeatedly broken by unknown vibration during the sea trial In this paper, the authors are searching for the possibilities and causes of the elastic coupling failure, via the global vibration measurement and the past incident investigation.

  • PDF

An Experimental Study for Integrated Vibration Monitoring System Development in Marine Diesel Engine (선박용 디젤 엔진의 종합 진동 모니터닝 시스템 개발을 위한 실험적인 연구)

  • Lee, D.C.;Joo, K.S.;Nam, T.K.;Kim, S.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.880-885
    • /
    • 2007
  • Diesel engines have been widely used in ships and power plants because of its higher thermal efficiency, mobility and durability compared to other prime movers. Though these merits, diesel engine including main components are sometimes vibrated due to higher combustion pressure in cylinders. Especially torsional, axial and structural vibrations in propulsion shafting may be severely manifested by the malfunction of torsional and axial dampers and misfiring and unbalanced load in cylinder. The structural vibration of main body and turbocharger core hole are also occurred by the loosen top bracing and excess wear-out or failure of turbocharger's bearings. The marine diesel engine should be safely designed from these vibrations. This paper introduces experimental methods to develop the prototype of integrated vibration monitoring system for marine diesel engine.

  • PDF