• Title/Summary/Keyword: 선미유동

Search Result 67, Processing Time 0.018 seconds

수학선형 선미에서 두꺼운 3차원 난류경계층의 해석 및 실험(I) 유동계측

  • 강신영;이택식;이근형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.3
    • /
    • pp.269-276
    • /
    • 1985
  • 본 논문에서는 이러한 두꺼운 3차원 난류 경계층의 체계적인 연구를 위하여 적합한 수학선형을 개발하고 저속풍동에서 경계층 실험을 수행하였다. 이 수학선형 은 가능한 실제 선체주위의 유동특성이 잘 나타나도록 설계되었다. 실험을 통하여 전체적 유동을 파악하고 표면에서 평균 속도분포, 마찰저항계수 및 각종 적분변수들을 측정하였다.

Topological View of Viscous Flow behind Transom Stern (트랜섬 선미 후방의 점성 유동장 Topology 관찰)

  • Kim, Wu-Joan;Park, Il-Ryong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.4 s.142
    • /
    • pp.322-329
    • /
    • 2005
  • Viscous flows behind transom stern are analyzed based on CFD simulation results. Stern wave pattern is often complicated due to the abrupt change of stern surface curvature and flow separation at transom. When a ship advances at high speed, whole transom stern is exposed out of water, resulting in the so-called 'dry transom'. However, in the moderate speed regime, stern wave development in conjunction of flow separation makes unstable wavy surface partially covering transom surface, i.e., the so-called 'wetted transom'. Transom wave formation is usually affecting the resistance characteristics of a ship, since the pressure contribution on transom surface as well as the wave-making resistance is changed. Flow modeling for 'wetted transom' is difficult, while the 'dry transom modeling' is often applied for the high-speed vessels. In the present study CFD results from the RANS equation solver using a finite volume method with level-set treatment are utilized to assess the topology of transom flow pattern for a destroyer model (DTMB5415) and a container ship (KCS). It is found that transom flow patterns are quite different for the two ships, in conformity to the shape of submerged transom. Furthermore, the existence of free surface seems to after the flow topology in case of KCS.

Practical Method for Generating Surface Mesh using Offset Table (기본 오프셋을 이용한 상선의 선체표면 격자계 생성방법)

  • Wo-Joan Kim;Suak-Ho Van
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.1
    • /
    • pp.61-69
    • /
    • 1999
  • To promote the usability of CFD techniques for the basic hull form design, a hull surface mesh generating program, based on given station offsets and centerline profile, is developed. The new method employs non-uniform parametric splines with predetermined waterline end-shapes of natural spline, normal spline, ellipse, parabola hyperbola, and their combinations. Generated hull surface meshes can be utilized for potential panel method immediately and can be also used as a boundary grid surface for 3-D field grid system. Mesh topology chosen to represent hull surface can be transformed into a rectangle, which he1ps the flow solvers to transform surface meshes for the nonlinear free surface condition or to define the turbulence quantities. To prove the applicability, a container ship with bow and stem bulb is chosen, and the procedures generating hull surface meshes are described.

  • PDF

Calculation of Flows around Container Ship Models with Different Reynolds Numbers (Reynolds 수가 다른 컨테이너선 모형 주위의 유동 계산)

  • Kim, Byoung-Nam;Park, Jong-Hwan;Kim, Wu-Joan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.3 s.153
    • /
    • pp.258-266
    • /
    • 2007
  • CFD calculations are performed for KRISO 3600TEU container ship(KCS) models with different Reynolds numbers. Numerical calculations of the turbulent flows with the free surface around KCS have been carried out at $Re=0.791{\times}106\;and\;Re=1.4{\times}107$ using a standard Fluent package. In both cases, Froude number is fixed with 0.26 and wave elevation is simulated by using the VOF method. The calculated results at $Re=1.4{\times}107\;and\;Re=0.791{\times}106$ are compared with the experiment data of KRISO towing tank test and RIMS CWC test, respectively. Boundary layer thickness and wake field shows Reynolds number differences. There are some changes in wave pattern behind transom stern.

Development of Computational Methods for Viscous Flow around a Commercial Ship Using Finite-Volume Methods (유한체적법을 이용한 상선주위의 난류유동 계산에 관한 연구)

  • Wu-Joan Kim;Do-Hyun Kim;Suak-Ho Van
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.4
    • /
    • pp.19-30
    • /
    • 2000
  • A finite-volume method is developed to solve turbulent flows around modern commercial hull forms with bow and stern bulbs. The RANS equations are solved. The cell-centered finite-volume method employs QUICK and central difference scheme for convective and diffusive flux discretization, respectively. The SIMPLEC method is adopted for the velocity-pressure coupling. The developed numerical methods are applied to calculate turbulent flow around KRISO 3600TEU container ship. Surface meshes are generated into five blocks: bow and stern bulbs, overhang, fore and afterbody. 3-D field grid system with O-H topology is generated using elliptic grid generation method. Surface friction lines and wake distribution at propeller plane is compared with experiment. The calculated results show that the present method can be used to predict flow around a modern commercial hull forms with bulbs.

  • PDF

Study on the Scale Effect of Viscous Flows around the Ship Stern (선미 점성 유동장에 미치는 척고효과에 관한 연구)

  • Kwak, Y.K.;Min, K.S.;Oh, K.J.;Kang, S.H.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.1
    • /
    • pp.1-10
    • /
    • 1997
  • Viscous flow around actual ship is calculated by an use of RANS equations. The propriety of this computing method, usefulness to hull form design and the scale effect which is the effect of viscous flow depending on the scale of ship model are investigated. Reynolds stress is modelled by using k-${\varepsilon}$ turbulence model and the law of wall is applied near the body. Body fitted coordinates are introduced for the treatment of the arbitrary 3-dimensional shape of the ship hull form. The transformed equations in the computational domain are numerically solved by an employment of FVM. In the calculation of pressure, SIMPLE method is adopted and the solution of the discretized equation is obtained by the line-by-line method with the use of TDMA The calculations of two ships, 4410 TEU container carrier and 50,000 DWT class bulk carrier, are performed at model and actual ship scale. The results are compared and discussed with the model test results which are viscous resistance, nominal wake distribution at propeller plane and limiting streamline on the hull surface. They describe the effect of stem form and the scale effect very well. In particular, the calculated nominal wake distribution and limiting streamline are agreed qualitatively with the experiments and the viscous resistance values are estimated within ${\pm}5%$ difference from the resistance tests.

  • PDF

Velocities Induced by Stator Arrays in a Class of Shear Flows (전단 유동중에 놓인 스테이터에 의한 유기속도)

  • E.D.,Park
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.2
    • /
    • pp.13-20
    • /
    • 1990
  • The interaction of the flows induced by stator blades with a ship-like wake is discussed to obtain the flow components of each with and without radial shear. The flow induced by stator blades is modeled by lifting line theory and the shear is taken to be provided by the radial gradient of the peripheral mean axial flow approximated by a logarithmic function of radius for a class of vessels. And the theory is based on the linearized Euler equations in the absence of viscosity. The results show that shear effects are relatively large at inner radii and the distribution of blade pitch angles is most effective in reducing non-uniformity.

  • PDF

Numerical Calculations of Three-dimensional Viscous Flows over a stern by the Semi-Elliptic Equations (준타원형 방정식에 의한 선미에서의 3차원 점성유동의 수치계산)

  • Shin-Hyoung,Kang;Keon-Je,Oh
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.1
    • /
    • pp.11-23
    • /
    • 1989
  • A computer code has been developed to simulate three-dimensional viscous flows over a ship-stern. Semi-elliptic forms of Reynolds equations are adopted and numerically generated body-fitted coordinate systems are used to resolve complex geometries of the ship-hull. A standard form of $k-\varepsilon$ turbulence model is adopted for evaluation of the Reynolds stresses. Turbulent flows on a model with 3:1 elliptic sections and the SSPA-720 container ship model are predicted by using the code. Calculated pressure distributions of hull-surfaces and mean velocity distributions are generally in good agreements with measured values in wind-tunnels. But turbulent kinetic energies tend to be over-estimated near the stern in comparison with measured data.

  • PDF

Sub- Breaking Analysis of Free Surface Flows by the Numerical Simulation (수치 시뮬레이션을 통한 자유표면 유동의 Sub-Breaking 해석)

  • Kwag, Seung-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.28 no.8
    • /
    • pp.753-757
    • /
    • 2004
  • The free-surface flow is simulated to make clear the viscous interaction of stem waves and the sub-breaking phenomena around a high speed vehicle. The Navier-Stokes equation is solved by a finite difference method where the body-fitted coordinate system, the wall function and the triple-grid system are invoked They are applied to study precisely on the stem flow of S-103 as to which extensive experimental data are available. Computations are extended to the submerged revolutional body. The numerical result shows that the gradient of M/Us is greatly influenced by the submerged depth And the stem wave is influenced by the separation due to the bow wave.

The Effect of Transient Eccentric Propeller Forces on Shaft Behavior Measured Using the Strain Gauge Method During Starboard Turning of a 4,700 DWT Ship (스트레인 게이지법을 이용한 4,700 DWT 선박의 우현 전타시 프로펠러 편심추력이 축 거동에 미치는 영향 연구)

  • Lee, Jae-ung;Kim, Hong-Ryeol;Rim, Geung-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.4
    • /
    • pp.482-488
    • /
    • 2018
  • Generally, after stern tube bearing shows a significant increase in local load due to propeller load, which increases the potential adverse effects of bearing failure. To prevent this, research on regarding shaft alignment has been carried out with a focus on reducing the relative slope between the shaft and support bearing(s) under quasi-static conditions. However, for a more detailed evaluation of a shafting system, it is necessary to consider dynamic conditions. In this context, the results revealed that eccentric propeller force under transient conditions such as a rapid rudder turn at NCR, lead to fluid-induced instability and imbalanced vibration in the stern tube. In addition, compared with NCR condition, it has been confirmed that eccentric propeller forces given a rapid rudder starboard turn can lift a shaft from the stern tube bearing in the stern tube, contributes to load relief for the stern tube bearing.