• Title/Summary/Keyword: 선량특성

Search Result 793, Processing Time 0.026 seconds

Development of High Energy X-ray Dose Measuring Device based Ion Chamber for Cargo Container Inspection System (이온전리함 기반의 컨테이너 검색용 고에너지 X-선 선량 측정장치 개발)

  • Lee, Junghee;Lim, Chang Hwy;Park, Jong-Won;Lee, Sang Heon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.12
    • /
    • pp.1711-1717
    • /
    • 2020
  • X-ray of up to 9MeV are used for container inspection. X-ray intensity must be maintained stably regardless of changes in time. If dose is not constant, it may affect the image quality, and as a result, may affect the inspection of abnormal cargo. Therefore, to acquire high-quality images, continuous dose monitoring is required. In this study, the ion-chamber based device was developed for monitoring the dose change in high-energy x-ray. And to estimate the performance of signal-processing device change according to the environmental change, the output changing due to the change of temperature and humidity was observed. In addition, verification of the device was performed by measuring the output change. As a result of the measurement, there was no significant difference in performance due to changes in temperature and humidity, and the change in output according to the change in exposure was linear. Therefore, it was found that the developed device is suitable for the dose monitoring of high-energy x-ray.

Comparison of Treatment Planning on Dosimetric Differences Between 192Ir Sources for High-Dose Rate Brachytherapy (고선량률 근접치료에서 이리듐-192 선원의 선량특성 차이에 관한 치료계획 비교)

  • Yang, Oh-Nam;Shin, Seong Soo;Ahn, Woo Sang;Kim, Dae-Yong;Kwon, Kyung-Tae;Lim, Cheong-Hwan;Lee, Sang Ho;Choi, Wonsik
    • Journal of radiological science and technology
    • /
    • v.39 no.2
    • /
    • pp.163-170
    • /
    • 2016
  • To evaluate whether the difference in geometrical characteristics between high-dose-rate (HDR) $^{192}Ir$ sources would influence the dose distributions of intracavitary brachytherapy. Two types of microSelectron HDR $^{192}Ir$ sources (classic and new models) were selected in this study. Two-dimensional (2D) treatment plans for classic and new sources were generated by using PLATO treatment planning system. We compared the point A, point B, and bladder and rectum reference points based on ICRU 38 recommendation. The radial dose function of the new source agrees with that of the classic source except difference of up to 2.6% at the nearest radial distance. The differences of anisotropy functions agree within 2% for r=1, 3, and 5 cm and $20^{\circ}$ < ${\theta}$ < $165^{\circ}$. The largest discrepancies of anisotropy functions reached up to 27% for ${\theta}$ < $20^{\circ}$ at r=0.25 cm and were up to 13%, 10%, and 7% at r=1, 3, and 5 cm for ${\theta}$ > $170^{\circ}$, respectively. There were no significant differences in doses of point A, point B, and bladder point for the treatment plans between the new and classic sources. For the ICRU rectum point, the percent dose difference was on average 0.65% and up to 1.0%. The dose discrepancies between two treatment plans are mainly affected due to the geometrical difference of the source and the sealed capsule.

Quality Characteristics of Gamma Irradiated-Imported Orange during Storage at Room Temperature (20℃) (감마선 조사 수입 오렌지의 상온저장(20℃) 중 품질 특성)

  • Kyung, Eun-Ji;Kim, Kyoung-Hee;Yook, Hong-Sun
    • The Korean Journal of Food And Nutrition
    • /
    • v.27 no.2
    • /
    • pp.183-193
    • /
    • 2014
  • This study is conducted to evaluate the effects of gamma irradiation (0.4, 0.6, 0.8, 1 and 1.5 kGy) on the microbiological, physicochemical and sensory qualities of imported oranges during storage at $20^{\circ}C$ for 15 days. Total aerobic bacteria and yeast/mold counts in non-irradiated oranges increase significantly with increasing storage time. Irradiation has effects on the reduction of microorganism of dose-dependent oranges. The vitamin C contents decrease significantly according to dose-dependent manners and storage times after the gamma irradiation. Sensory evaluation decreases according to dose-ependent manners and storage times, excluding the color. The results suggest that gamma irradiation is effective for ensuring the microbiological safety, but the irradiated oranges more than 1 kGy are not good for physicochemical and sensory qualities. Therefore, irradiated samples of 0.4~0.6 kGy are considered as the optimum-dose for maintaining quality.

Radiation effects of I-V characteristics in MOS structure irradiated under $Co^{60}-{\gamma}$ ray ($Co^{60}-{\gamma}$ ray을 조사시킨 MOS 구조에서의 I-V특성의 방사선 조사 효과)

  • Kwon, S.S.;Jeong, S.H.;Lim, K.J.;Ryu, B.H.;Kim, B.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1992.11a
    • /
    • pp.123-127
    • /
    • 1992
  • When MOS devices is exposed to radiation, radiation effects of P-type MOS capacitor can cause modulation and/or degradation in devices characteristics and its operating life. The oxide layer is grown in $O_2$+T.C.E. and its thickness ranges from 40 to 80 nm. Irradiations on MOS capacitor were performed by Cobalt-60 gamma ray source and total dose ranges from $10^4$ to $10^8$ rads. The radiation effect on electrical conduction characteristics(I-V) in MOS capacitor was measured as a function of gate oxide thickness and total dose. From the experimental result, I-V characteristics is found to be influenced strongly by total dose in irradiated p-type MOS capacitors. The ohmic current is dependant on of total dose in irradiated P-type MOS capacitors. This results are explained using surface states at interface radiation-induced traps.

  • PDF

Development of Radiation Dosimeter using Commercial p-MOSFET (상용 p-MOSFET을 이용한 방사선 선량계 개발)

  • Lee, Nam-Ho;Choi, Young-Su;Lee, Yong-B.;Youk, Geun-Uck
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.95-101
    • /
    • 1999
  • When a metal oxide field effect transistor (MOSFET) is exposed to ionizing radiation, electron/hole pairs are generated in its oxide layer. The slow moving holes of them are trapped in the oxide layer of p-MOSFET and appear as extra charges that change the characteristics of the transistor. The radiation-induced charges directly impact the threshold (turn-on) voltage of the transistor. This paper describes the use of the radiation-induced threshold voltage change as an accumulated radiation dose monitoring sensor. Two kinds of commercial p-type MOSFETS were tested in a Co-60 gamma irradiation facility to see their capabilities as a radiation dosimeter. We found that the transistors showed good linearity in their threshold voltage shift characteristics with radiation dose. The results demonstrate the potential use of commercial p-MOSFETS as inexpensive radiation sensors for the first time.

  • PDF

Quality Characteristics of Low-Dose Electron Beam Irradiated-Imported Navel Orange during Storage at Low Temperature (3°C) (저선량 전자선 조사 수입 오렌지의 저온 저장 중 품질 특성)

  • Cho, Yun-Jeong;Kim, Kyung-Hee;Yook, Hong-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.1
    • /
    • pp.128-136
    • /
    • 2015
  • This study investigated the effects of low-dose electron beam irradiation treatment on physicochemical and sensorial properties of imported navel oranges during storage at $3^{\circ}C$ for 45 days. The samples were irradiated at doses of 0.2, 0.4, 0.6, 0.8, and 1.0 kGy, and changes in their color values, hardness, Brix/acid ratio, total sugar contents, reducing sugar contents, vitamin C contents, and sensory evaluation were investigated. There were no significant differences between non-irradiated and irradiated samples in terms of color values, Brix/acid ratio, total sugar contents, total reducing sugar contents, and vitamin C contents. Hardness of irradiated sample at 1 kGy decreased significantly in the early storage period, but the difference between non-irradiated and irradiated samples decreased again at the end of storage. For the sensory evaluation, scores of color, sweetness, flavor, and overall acceptability decreased as irradiation dose and storage period increased. Samples irradiated at over 0.8 kGy showed low preference in all scores except color. These results suggest that electron beam irradiation below 0.6 kGy does not affect physicochemical and sensory properties; thus, electron beam irradiation up to 0.6 kGy in imported navel oranges is optimum for minimizing quality changes and disinfestation treatment simultaneously.

The Properties of Beam Intensity Scanner (BInS) for Dose Verification in Intensity Modulated Radiation Therapy (방사선 세기 조절 치료에서 선량을 규명하는 데 사용된 BlnS System의 특성)

  • 박영우;박광열;박경란;권오현;이명희;이병용;지영훈;김근묵
    • Progress in Medical Physics
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • Patient dose verification is one of the most Important responsibilities of the physician in the treatment delivery of radiation therapy. For the task, it is necessary to use an accurate dosimeter that can verify the patient dose profile, and it is also necessary to determine the physical characteristics of beams used in intensity modulated radiation therapy (IMRT) The Beam Intensity Scanner (BInS) System is presented for the dosimetric verification of the two dimensional photon beam. The BInS has a scintillator, made of phosphor Terbium-doped Gadolinium Oxysulphide (Gd$_2$O$_2$S:Tb), to produce fluorescence from the irradiation of photon and electron beams. These fluoroscopic signals are collected and digitized by a digital video camera (DVC) and then processed by custom made software to express the relative dose profile in a 3 dimensional (3D) plot. As an application of the BInS, measurements related to IWRT are made and presented in this work. Using a static multileaf collimator (SMLC) technique, the intensity modulated beam (IMB) is delivered via a sequence of static portals made by controlled leaves. Thus, when static subfields are generated by a sequence of abutting portals, the penumbras and scattered photons of the delivered beams overlap in abutting field regions and this results in the creation of “hot spots”. Using the BInS, inter-step “hot spots” inherent in SMLC are measured and an empirical method to remove them is proposed. Another major MLC technique in IMRT, the dynamic multileaf collimator (DMLC) technique, has different characteristics from SMLC due to a different leaf operation mechanism during the irradiation of photon and electron beams. By using the BInS, the actual delivered doses by SMLC and DMLC techniques are measured and compared. Even if the planned dose to a target volume is equal in our experimental setting, the actual delivered dose by DMLC technique is measured to be larger by 14.8% than that by SMLC, and this is due to scattered photons and contaminant electrons at d$_{max}$.

  • PDF

Characteristics of the Maximum Glow Intensity According to the Thermoluminescent Phosphors used in the Absorbed Dose Measurement of the Radiation Therapy (방사선치료 선량 측정에 사용되는 열형광체에 따른 최대 형광 강도 특성)

  • Kang, Suman;Im, Inchul;Park, Cheolwoo;Lee, Mihyeon;Lee, Jaeseung
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.4
    • /
    • pp.181-187
    • /
    • 2014
  • The purpose of this study were to analyze the characteristic of the glow curves in order to the glow temperature of the thermoluminescent dosimeters (TLDs) for the absorbed dose measurement of the radiation therapy. In this study, we was used the TLDs of the LiF:Mg${\cdot}$Ti, LiF:Mg${\cdot}$Cu${\cdot}$P, $CaF_2$:Dy, $CaF_2$:Mn (Thermo Fisher Scientific Inc., USA). The source-to-solid dry phantom (RW3 slab, IBA Dosmetry, Germany) surface distance was set at 100 cm, and the exposure dose of 100 MU (monitor unit) was used 6- and 15-MV X-rays, and 6- and 12-MeV electron beams in the reference depth, respectively. After the radiations exposure, we were to analyze the glow curves by using the TL reader (Hashaw 3500, Thermo Fisher Scientific Inc., USA) at the fixed heating rate of $15^{\circ}C/sec$ from $50^{\circ}C$ to $260^{\circ}C$. The glow peaks, the trapping level in the captured electrons and holes combined with the emitted light, were discovered the two or three peak. When the definite increasing the temperature of the TLDs, the maximum glow peak representing the glow temperature was follow as; $LiF:Mg{\cdot}Ti$: $185.5{\pm}1.3^{\circ}C$, $LiF:Mg{\cdot}Ti$: $135.0{\pm}5.1^{\circ}C$, $CaF_2$:Dy: $144.0{\pm}1.6^{\circ}C$, $CaF_2$:Mn: $294.3{\pm}3.8^{\circ}C$, respectively. Because the glow emission probability of the captured electrons depend on the heating temperature after the exposure radiation, TLDs by applying the fixed heating rate, the accuracy of measurement will be able to improve within the absorbed dose measurement of the radiation therapy.

A Study on the Evaluation of Patient Dose in Interventional Radiology (중재적방사선검사에서 환자 피폭선량에 관한 연구)

  • Park, Hyung-Sin;Lim, Cheong-Hwan;Kang, Byung-Sam;You, In-Gyu;Jung, Hong-Ryang
    • Journal of radiological science and technology
    • /
    • v.35 no.4
    • /
    • pp.299-308
    • /
    • 2012
  • To perform patient dose surveys in major interventional radiography procedures as a mean of inter-institutional comparison and of establishing reference dose levels with the ultimate goal of optimizing patient doses in the field of interventional radiography. We reviewed international patient dose survey data in the literature and measured patient dose in major interventional radiography procedures (TACE, AVF, PTBD, TFCA, GDC embolization). ESD(Entrance Skin Dose) was measured using TLD chips attached to the patient skin and ED(Effective Dose) was calculated using angiography unit-derived DAP. A survey of patient dose in interventional radiography procedures were also performed with a questionnaire for interventional radiologists and we proposed a guideline for optimizing patient doses in the field of interventional radiology. The patient dose survey data in interventional radiography procedures were very rare in literature compared with those in diagnostic radiography procedures. In TACE, the mean ED was 25.43 mSv and the mean ESD was 511.75 mGy. The mean ED of TACE was not high, but the cumulative dose should be checked, due to longer procedure TACE. In TFCA, the mean ED was 22.6 mSv and it was relatively high compared with data of other countries. In GDC embolization, the mean ED was not available, because GDC embolization was performed with old Image-Intensifier-type unit and there has no unit-installed ionization chamber. Also, the mean ESD of GDC embolization was up to 2,264 mGy and further studies are needed to calculate the net ED of GDC embolization. Patient dose occurred during interventional radiography procedures are high related with the difficulty of the procedure, fluoroscopy time, the number of angiographies and the treatment protocol. Therefore, continuous education and efforts should be made to optimize the patient dose in the field of interventional radiology.

Development of a Dose Calibration Program for Various Dosimetry Protocols in High Energy Photon Beams (고 에너지 광자선의 표준측정법에 대한 선량 교정 프로그램 개발)

  • Shin Dong Oh;Park Sung Yong;Ji Young Hoon;Lee Chang Geon;Suh Tae Suk;Kwon Soo IL;Ahn Hee Kyung;Kang Jin Oh;Hong Seong Eon
    • Radiation Oncology Journal
    • /
    • v.20 no.4
    • /
    • pp.381-390
    • /
    • 2002
  • Purpose : To develop a dose calibration program for the IAEA TRS-277 and AAPM TG-21, based on the air kerma calibration factor (or the cavity-gas calibration factor), as well as for the IAEA TRS-398 and the AAPM TG-51, based on the absorbed dose to water calibration factor, so as to avoid the unwanted error associated with these calculation procedures. Materials and Methods : Currently, the most widely used dosimetry Protocols of high energy photon beams are the air kerma calibration factor based on the IAEA TRS-277 and the AAPM TG-21. However, this has somewhat complex formalism and limitations for the improvement of the accuracy due to uncertainties of the physical quantities. Recently, the IAEA and the AAPM published the absorbed dose to water calibration factor based, on the IAEA TRS-398 and the AAPM TG-51. The formalism and physical parameters were strictly applied to these four dose calibration programs. The tables and graphs of physical data and the information for ion chambers were numericalized for their incorporation into a database. These programs were developed user to be friendly, with the Visual $C^{++}$ language for their ease of use in a Windows environment according to the recommendation of each protocols. Results : The dose calibration programs for the high energy photon beams, developed for the four protocols, allow the input of informations about a dosimetry system, the characteristics of the beam quality, the measurement conditions and dosimetry results, to enable the minimization of any inter-user variations and errors, during the calculation procedure. Also, it was possible to compare the absorbed dose to water data of the four different protocols at a single reference points. Conclusion : Since this program expressed information in numerical and data-based forms for the physical parameter tables, graphs and of the ion chambers, the error associated with the procedures and different user could be solved. It was possible to analyze and compare the major difference for each dosimetry protocol, since the program was designed to be user friendly and to accurately calculate the correction factors and absorbed dose. It is expected that accurate dose calculations in high energy photon beams can be made by the users for selecting and performing the appropriate dosimetry protocol.