• Title/Summary/Keyword: 선량체적표

Search Result 10, Processing Time 0.025 seconds

Comparison of 2D and 3D Brachytherapy Planning for Cervical Cancer (자궁경부암 근접방사선치료 시 2차원, 3차원 치료계획 비교평가)

  • Kim, Jung Hoon
    • Journal of radiological science and technology
    • /
    • v.40 no.2
    • /
    • pp.303-309
    • /
    • 2017
  • To evaluate the usefulness of 3-dimensional brachytherapy(BT) planning technique based on CT in cervical cancer. Patients with cervical cancer underwent 2-D BT treatment planning and then CT scan with HDR intracavitary applicators in place with same positions. Dose was prescribed to Point A with 5Gy per fraction on 2-D BT planning. For 3-D BT planning, and dose was prescribed to the High risk CTV for BT (HR CTV) with 5Gy. The 3-D BT planning goal was to cover at least 90% of the HR CTV with target 5Gy isodose surface while limiting the dose to $2cm^3$ of bladder to less than 7.5 Gy, and $2cm^3$ of rectum to less than 5Gy. In one patient of 10 patients, $D_{2cm3}$ of rectal dose was over 5Gy and 6patients at $D_{2cm3}$ of bladder dose on 2-D BT planning. There was a tendency to underestimate ICRU bladder dose than ICRU rectal dose. CT based 3-D BT planning for cervical cancer will enable evaluation of dose distributions for tumor and critical organs at risk. So, rectal and bladder morbidity as well as geographic miss will be reduced in case of the bulky disease or uterine malposition.

Dose Planning of Forward Intensity Modulated Radiation Therapy for Nasopharyngeal Cancer using Compensating Filters (보상여과판을 이용한 비인강암의 전방위 강도변조 방사선치료계획)

  • Chu Sung Sil;Lee Sang-wook;Suh Chang Ok;Kim Gwi Eon
    • Radiation Oncology Journal
    • /
    • v.19 no.1
    • /
    • pp.53-65
    • /
    • 2001
  • Purpose : To improve the local control of patients with nasopharyngeal cancer, we have implemented 3-D conformal radiotherapy and forward intensity modulated radiation therapy (IMRT) to used of compensating filters. Three dimension conformal radiotherapy with intensity modulation is a new modality for cancer treatments. We designed 3-D treatment planning with 3-D RTP (radiation treatment planning system) and evaluation dose distribution with tumor control probability (TCP) and normal tissue complication probability (NTCP). Material and Methods : We have developed a treatment plan consisting four intensity modulated photon fields that are delivered through the compensating tilters and block transmission for critical organs. We get a full size CT imaging including head and neck as 3 mm slices, and delineating PTV (planning target volume) and surrounding critical organs, and reconstructed 3D imaging on the computer windows. In the planning stage, the planner specifies the number of beams and their directions including non-coplanar, and the prescribed doses for the target volume and the permissible dose of normal organs and the overlap regions. We designed compensating filter according to tissue deficit and PTV volume shape also dose weighting for each field to obtain adequate dose distribution, and shielding blocks weighting for transmission. Therapeutic gains were evaluated by numerical equation of tumor control probability and normal tissue complication probability. The TCP and NTCP by DVH (dose volume histogram) were compared with the 3-D conformal radiotherapy and forward intensity modulated conformal radiotherapy by compensator and blocks weighting. Optimization for the weight distribution was peformed iteration with initial guess weight or the even weight distribution. The TCP and NTCP by DVH were compared with the 3-D conformal radiotherapy and intensitiy modulated conformal radiotherapy by compensator and blocks weighting. Results : Using a four field IMRT plan, we have customized dose distribution to conform and deliver sufficient dose to the PTV. In addition, in the overlap regions between the PTV and the normal organs (spinal cord, salivary grand, pituitary, optic nerves), the dose is kept within the tolerance of the respective organs. We evaluated to obtain sufficient TCP value and acceptable NTCP using compensating filters. Quality assurance checks show acceptable agreement between the planned and the implemented MLC(multi-leaf collimator). Conclusion : IMRT provides a powerful and efficient solution for complex planning problems where the surrounding normal tissues place severe constraints on the prescription dose. The intensity modulated fields can be efficaciously and accurately delivered using compensating filters.

  • PDF

Dose Comparison Using Deformed Image Registration Method on Breast Cancer Radiotherapy (유방암 방사선치료에서 변형영상정합기법을 이용한 선량비교)

  • Won, Young Jin;Kim, Jong Won;Kim, Jung Hoon
    • Journal of radiological science and technology
    • /
    • v.40 no.1
    • /
    • pp.57-62
    • /
    • 2017
  • The purpose of this study is to reconstruct the treatment plan by applying CBCT and DIR to dose changes according to the change of the patient's motion and breast shape in the large breast cancer patients and to compare the doses using TWF, FIF and IMRT. CT and CBCT were performed with MIM6 to create DIRCT and each treatment plan was made. The patient underwent computed tomography simulation in both prone and supine position. The homogeneity index (HI), conformity index (CI), coverage index (CVI) to the left breast as planning target volume (PTV) were determined and the doses to the lung, heart, and right breast as organ at risk (OAR) were compared by using dose-volume histogram and the unique property of each organ. The value of HI of the PTV breast increased in all treatment planning methods using DIRCT, and CVI and CI were decreased in the treatment planning methods using DIRCT.

Beam Shaping by Independent Jaw Closure in Steveotactic Radiotherapy (정위방사선치료 시 독립턱 부분폐쇄를 이용하는 선량분포개선 방법)

  • Ahn Yong Chan;Cho Byung Chul;Choi Dong Rock;Kim Dae Yong;Huh Seung Jae;Oh Do Hoon;Bae Hoonsik;Yeo In Hwan;Ko Young Eun
    • Radiation Oncology Journal
    • /
    • v.18 no.2
    • /
    • pp.150-156
    • /
    • 2000
  • Purpose : Stereotactic radiation therapy (SRT) can deliver highly focused radiation to a small and spherical target lesion with very high degree of mechanical accuracy. For non-spherical and large lesions, however, inclusion of the neighboring normal structures within the high dose radiation volume is inevitable in SRT This is to report the beam shaping using the partial closure of the independent jaw in SRT and the verification of dose calculation and the dose display using a home-made soft ware. Materials and Methods : Authors adopted the idea to partially close one or more independent collimator jaw(5) in addition to the circular collimator cones to shield the neighboring normal structures while keeping the target lesion within the radiation beam field at all angles along the arc trajectory. The output factors (OF's) and the tissue-maximum ratios (TMR's) were measured using the micro ion chamber in the water phantom dosimetry system, and were compared with the theoretical calculations. A film dosimetry procedure was peformed to obtain the depth dose profiles at 5 cm, and they were also compared with the theoretical calculations, where the radiation dose would depend on the actual area of irradiation. Authors incorporated this algorithm into the home-made SRT software for the isodose calculation and display, and was tried on an example case with single brain metastasis. The dose-volume histograms (DVH's) of the planning target volume (PTV) and the normal brain derived by the control plan were reciprocally compared with those derived by the plan using the same arc arrangement plus the independent collimator jaw closure. Results : When using 5.0 cm diameter collimator, the measurements of the OF's and the TMR's with one independent jaw set at 30 mm (unblocked), 15.5 mm, 8.6 mm, and 0 mm from th central beam axis showed good correlation to the theoretical calculation within 0.5% and 0.3% error range. The dose profiles at 5 cm depth obtained by the film dosimetry also showed very good correlation to the theoretical calculations. The isodose profiles obtained on the home-made software demonstrated a slightly more conformal dose distribution around the target lesion by using the independent jaw closure, where the DVH's of the PTV were almost equivalent on the two plans, while the DVH's for the normal brain showed that less volume of the normal brain receiving high radiation dose by using this modification than the control plan employing the circular collimator cone only. Conclusions : With the beam shaping modification using the independent jaw closure, authors have realized wider clinical application of SRT with more conformal dose planning. Authors believe that SRT, with beam shaping ideas and efforts, should no longer be limited to the small spherical lesions, but be more widely applied to rather irregularly shaped tumors in the intracranial and the head and neck regions.

  • PDF

Development of Conformal Radiotherapy with Respiratory Gate Device (호흡주기에 따른 방사선입체조형치료법의 개발)

  • Chu Sung Sil;Cho Kwang Hwan;Lee Chang Geol;Suh Chang Ok
    • Radiation Oncology Journal
    • /
    • v.20 no.1
    • /
    • pp.41-52
    • /
    • 2002
  • Purpose : 3D conformal radiotherapy, the optimum dose delivered to the tumor and provided the risk of normal tissue unless marginal miss, was restricted by organ motion. For tumors in the thorax and abdomen, the planning target volume (PTV) is decided including the margin for movement of tumor volumes during treatment due to patients breathing. We designed the respiratory gating radiotherapy device (RGRD) for using during CT simulation, dose planning and beam delivery at identical breathing period conditions. Using RGRD, reducing the treatment margin for organ (thorax or abdomen) motion due to breathing and improve dose distribution for 3D conformal radiotherapy. Materials and Methods : The internal organ motion data for lung cancer patients were obtained by examining the diaphragm in the supine position to find the position dependency. We made a respiratory gating radiotherapy device (RGRD) that is composed of a strip band, drug sensor, micro switch, and a connected on-off switch in a LINAC control box. During same breathing period by RGRD, spiral CT scan, virtual simulation, and 3D dose planing for lung cancer patients were peformed, without an extended PTV margin for free breathing, and then the dose was delivered at the same positions. We calculated effective volumes and normal tissue complication probabilities (NTCP) using dose volume histograms for normal lung, and analyzed changes in doses associated with selected NTCP levels and tumor control probabilities (TCP) at these new dose levels. The effects of 3D conformal radiotherapy by RGRD were evaluated with DVH (Dose Volume Histogram), TCP, NTCP and dose statistics. Results : The average movement of a diaphragm was 1.5 cm in the supine position when patients breathed freely. Depending on the location of the tumor, the magnitude of the PTV margin needs to be extended from 1 cm to 3 cm, which can greatly increase normal tissue irradiation, and hence, results in increase of the normal tissue complications probabiliy. Simple and precise RGRD is very easy to setup on patients and is sensitive to length variation (+2 mm), it also delivers on-off information to patients and the LINAC machine. We evaluated the treatment plans of patients who had received conformal partial organ lung irradiation for the treatment of thorax malignancies. Using RGRD, the PTV margin by free breathing can be reduced about 2 cm for moving organs by breathing. TCP values are almost the same values $(4\~5\%\;increased)$ for lung cancer regardless of increasing the PTV margin to 2.0 cm but NTCP values are rapidly increased $(50\~70\%\;increased)$ for upon extending PTV margins by 2.0 cm. Conclusion : Internal organ motion due to breathing can be reduced effectively using our simple RGRD. This method can be used in clinical treatments to reduce organ motion induced margin, thereby reducing normal tissue irradiation. Using treatment planning software, the dose to normal tissues was analyzed by comparing dose statistics with and without RGRD. Potential benefits of radiotherapy derived from reduction or elimination of planning target volume (PTV) margins associated with patient breathing through the evaluation of the lung cancer patients treated with 3D conformal radiotherapy.

Independent Verification Program for High-Dose-Rate Brachytherapy Treatment Plans (고선량률 근접치료계획의 정도보증 프로그램)

  • Han Youngyih;Chu Sung Sil;Huh Seung Jae;Suh Chang-Ok
    • Radiation Oncology Journal
    • /
    • v.21 no.3
    • /
    • pp.238-244
    • /
    • 2003
  • Purpose: The Planning of High-Dose-Rate (HDR) brachytherapy treatments are becoming individualized and more dependent on the treatment planning system. Therefore, computer software has been developed to perform independent point dose calculations with the integration of an isodose distribution curve display into the patient anatomy images. Meterials and Methods: As primary input data, the program takes patients'planning data including the source dwell positions, dwell times and the doses at reference points, computed by an HDR treatment planning system (TPS). Dosimetric calculations were peformed in a $10\times12\times10\;Cm^3$ grid space using the Interstitial Collaborative Working Group (ICWG) formalism and an anisotropy table for the HDR Iridium-192 source. The computed doses at the reference points were automatically compared with the relevant results of the TPS. The MR and simulation film images were then imported and the isodose distributions on the axial, sagittal and coronal planes intersecting the point selected by a user were superimposed on the imported images and then displayed. The accuracy of the software was tested in three benchmark plans peformed by Gamma-Med 12i TPS (MDS Nordion, Germany). Nine patients'plans generated by Plato (Nucletron Corporation, The Netherlands) were verified by the developed software. Results: The absolute doses computed by the developed software agreed with the commercial TPS results within an accuracy of $2.8\%$ in the benchmark plans. The isodose distribution plots showed excellent agreements with the exception of the tip legion of the source's longitudinal axis where a slight deviation was observed. In clinical plans, the secondary dose calculations had, on average, about a $3.4\%$ deviation from the TPS plans. Conclusion: The accurate validation of complicate treatment plans is possible with the developed software and the qualify of the HDR treatment plan can be improved with the isodose display integrated into the patient anatomy information.

Comparison of Dosimetric Parameters of Patient with Large and Pendulous Breast Receiving Breast Radiotherapy in the Prone versus Supine Position (유방 크기가 큰 유방암 환자의 방사선 치료 시 환자의 자세에 따른 선량 비교)

  • Moon, Sun Young;Yoon, Myonggeun;Chung, Weon Kuu;Chung, Mijoo;Shin, Dong Oh;Kim, Dong Wook
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.234-240
    • /
    • 2015
  • The purpose of this study is to analyze dosimetric parameters of patient with large and pendulous breast receiving breast radiotherapy in the prone versus supine position. The patient underwent computed tomography simulation in both prone and supine position. The homogeneity index (HI), conformity index (CI), coverage index (CVI) to the left breast as planning target volume (PTV) and the doses to the lung, heart, and right breast as organ at risk (OAR) were compared by using dose-volume histogram. The lifetime attributable risk (LAR) according to the prone and supine position was measured for the lung and right breast. The HI, CI of the PTV decreased 21.7%, 6.49%, respectively and the CVI increased 10.8% with the prone position. The mean and maximum dose to the left lung decreased 91.6%, 87.0%, respectively and the volume parameters also decreased over 99% with the prone position. The parameters to the right lung were same regardless of the position. The mean and maximum dose to the heart decreased 51.6%, 14.2% with the prone position. But the mean and maximum dose to the right breast increased unlike the other OARs. The LARs to the lung decreased 80.3% (left), 24.2% (right) but the LAR to the right breast doubled with the prone position. The prone position is a favorable alternative for irradiation of breast in patients with large and pendulous breasts.

Evaluation of Electron Boost Fields based on Surgical Clips and Operative Scars in Definitive Breast Irradiation (유방보존술 후 방사선치료에서 수술 흉터와 삽입된 클립을 이용한 전자설 추가 방사선 조사야 평가)

  • Lee, Re-Na;Chung, Eun-Ah;Lee, Ji-Hye;Suh, Hyun-Suk
    • Radiation Oncology Journal
    • /
    • v.23 no.4
    • /
    • pp.236-242
    • /
    • 2005
  • Purpose: To evaluate the role of surgical clips and scars in determining electron boost field for early stage breast cancer undergoing conserving surgery and postoperative radiotherapy and to provide an optimal method in drawing the boost field. Materials and Methods: Twenty patients who had $4{\sim}7$ surgical clips in the excision cavity were selected for this study. The depth informations were obtained to determine electron energy by measuring the distance from the skin to chest wall (SCD) and to the clip implanted in the most posterior area of tumor bed. Three different electron fields were outlined on a simulation film. The radiological tumor bed was determined by connecting all the clips implanted during surgery Clinical field (CF) was drawn by adding 3 cm margin around surgical scar. Surgical field (SF) was drawn by adding 2 cm margin around surgical clips and an Ideal field (IF) was outlined by adding 2 cm margin around both scar and clips. These fields were digitized into our planning system to measure the area of each separate field. The areas of the three different electron boost fields were compared. Finally, surgical clips were contoured on axial CT images and dose volume histogram was plotted to investigate 3-dimensional coverage of the clips. Results : The average depth difference between SCD and the maximal clip location was $0.7{\pm}0.55cm$. Greater difference of 5 mm or more was seen in 12 patients. The average shift between the borders of scar and clips were 1.7 1.2, 1.2, and 0.9 cm in superior, inferior, medial, and lateral directions, respectively. The area of the CF was larger than SF and IF in 6y20 patients. In 15/20 patients, the area difference between SF and if was less than 5%. One to three clips were seen outside the CF in 15/20 patients. In addition, dosimetrically inadequate coverage of clips (less than 80% of prescribed dose) were observed in 17/20 patients when CF was used as the boost field. Conclusion: The electron field determined from clinical scar underestimates the tumor bed in superior-inferior direction significantly and thereby underdosing the tissue at risk. The electron field obtained from surgical clips alone dose not cover the entire scar properly As a consequence, our technique, which combines the surgical clips and clinical scars in determining electron boost field, was proved to be effective in minimizing the geographical miss as well as normal tissue complications.

The Effect of MLC Leaf Motion Constraints on Plan Quality and Delivery Accuracy in VMAT (체적조절호형방사선치료 시 갠트리 회전과 다엽콜리메이터의 이동 속도에 따른 선량분포 평가)

  • Kim, Yon-Lae;Chung, Jin-Beom;Lee, Jeong-woo;Shin, Young-Joo;Kang, Dong-Jin;Jung, Jae-Yong
    • Journal of radiological science and technology
    • /
    • v.42 no.3
    • /
    • pp.217-222
    • /
    • 2019
  • The purpose of this study is to evaluate the dose distribution by gantry rotation and MLC moving speed on treatment planning system(TPS) and linear accelerator. The dose analyzer phantom(Delta 4) was scanned by CT simulator for treatment planning. The planning target volumes(PTVs) of prostate and pancreas was prescribed 6,500 cGy, 5,000 cGy on VMAT(Volumetric Modulated Arc Therapy) by TPS while MLC speed changed. The analyzer phantom was irradiated linear accelerator using by planned parameters. Dose distribution of PTVs were evaluated by the homogeneity index, conformity index, dose volume histogram of organ at risk(rectum, bladder, spinal cord, kidney). And irradiated dose analysis were evaluated dose distribution and conformity by gamma index. The PTV dose of pancreas was 4,993 cGy during 0.1 cm/deg leaf and gantry that was the most closest prescribed dose(5,000 cGy). The dose of spinal cord, left kidney, and right kidney were accessed the lowest during 0.1 cm/deg, 1.5 cm/deg, 0.3 cm/deg. The PTV dose of prostate was 6,466 cGy during 0.1 cm/deg leaf and gantry that was the most closest prescribed dose(6,500 cGy). The dose of bladder and rectum were accessed the lowest during 0.3 cm/deg, 2.0 cm/deg. For gamma index, pancreas and prostate were analyzed the lowest error 100% at 0.8, 1.0 cm/deg and 99.6% at 0.3, 0.5 cm/deg. We should used the optimal leaf speed according to the gantry rotation if the treatment cases are performed VMAT.

Correction Method on Mismatched Posterior Edge of Medial and Lateral Tangential Fields for Three Fields Techniques in Breast Cancer (유방암 환자의 삼문 조사 시 내외측 접면 조사야의 Posterior Edge의 어긋남의 교정)

  • Kim Hun-Jung;Loh John JK;Kim Woo-Cheol;Park Sung-Young
    • Radiation Oncology Journal
    • /
    • v.21 no.2
    • /
    • pp.174-181
    • /
    • 2003
  • Purpose: The target volume for the three field technique in breast cancer include the breast tangential and supraclavicular areas. The techniques rotating the gantry and couch angles, to match these two areas, will geometrically produce mismatching of the posterior edge between the medial and lateral tangential beams. This mismatch was confirmed by film dosimetry and three-dimensional computer planning. The correction methods of this mismatching were studied in this article. Materials and Methods: After the supraclavicular field was simulated using a half beam block and the medial and lateral tangential fields, by the rotation of the couch and gantry, we compared the following two methods to correct the mismatch. The first method was the rotation of coillmator until a line drawn on the posterior edge of tangential beams before the rotation of couch aligned the line drawn on the posterior edge after the rotation. The second method was the rotation of collimator according to the formula developed by the author as follows; Co=$2sin^{-1}${$sin\{theta}\{cdot}sin(C/2)$} (Co: collimator angle, $\theta$: angle between tangential beam and table, C: couch angle) Results: The film dosimetry showed the mismatching of posterior edges of the medial and lateral tangential fields prior to the rotation of collimator, while the posterior edges matched well after the rotation of collimator according to the formula. The three-dimensional computer plan also showed that the posterior edges matched well after the rotation of collimator accordingly. The DVH of the ipsilateral lung with the proper rotation of collimator angle was better than that without the rotation of collimator angle. Conclusion: The mismatching of the posterior edges of the medial and lateral tangential fields can be recognized on the three fileld technique in breast irradiation when the gantry and couch are simultaneously rotated and can be corrected with the proper rotation of the collimator angle. The radiation dose to the ipsilateral lung could be lowered with this technique.