• Title/Summary/Keyword: 서스펜션 설계

Search Result 57, Processing Time 0.025 seconds

A Study on the Effect of Suspension of Vibro Pile Driver on Pile Driving System (진동타입기의 서스펜션이 진동시스템에 미치는 영향에 대한 연구)

  • Lee, Seung-Hyun;Kim, Byoung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.4
    • /
    • pp.826-831
    • /
    • 2007
  • Analytic solutions for pile driving system with and without suspension were presented and influences of suspension on the driving system were discussed. According to the results of analysis, magnitude of amplitude of vibratory pile driver with suspension increases as the mass of the suspension increases and soil dampening decreases. As a results of comparing power of vibratory pile driver with suspension with that of design criterion, power versus soil dampening reaches a peak value and then declines. The maximum power increases with mass ratio and the power is always below that of the Vulcan design criterion.

  • PDF

Fuzzy Controller Design for a Automotive Air Suspension (자동차 에어 서스펜션에 대한 퍼지 제어기 설계)

  • Liu, H.;Lee, J.C.
    • Journal of Drive and Control
    • /
    • v.9 no.2
    • /
    • pp.1-7
    • /
    • 2012
  • 본 연구의 목적은 에어 서스펜션 시스템의 제어 특성을 분석하는 것이다. 우선 에어 서스펜션 시스템의 수학적 모델을 구하였다. 그리고 퍼지 제어 알고리즘을 적용하여 반능동식 하이브리드 제어 에어 서스펜션을 구하였다. 차체 가속도에 따라 퍼지 제어기는 오리피스 개도를 변경하여 특정 영역에서 에어 스프링의 강도를 조정한다. 동시에 서스펜션 운동 상태에 따라 서스펜션 댐핑이 제어된다. 시뮬레이션 결과는 반능동식 하이브리드 제어 에어 서스펜션이 노면 접지능력의 상실이나 서스펜션 작동 공간의 증가 없이 최고의 승차감을 제공할 수 있음을 보여준다.

Development of Plastic Suspension System for Automotive Seat (자동차 시트용 플라스틱 서스펜션 시스템 개발)

  • Cho, Jae-Ung;Kim, Key-Sun;Choi, Doo-Seuk;Kim, Sei-Hwan;Bang, Seung-Ok;Cho, Chan-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1091-1097
    • /
    • 2011
  • This study aims to develop the plastic suspension assembly which is installed on inside of vehicle seat and supports passenger's back to provide the comfortable feeling. This design is the suspension structure to support the back equally and assemble seat back frame and plastic suspension effectively. The parts of suspension are designed by considering the property of body pressure distribution. As analysis values are approached to measured values by comparing the deformations in the cases of existed spring suspension and developed plastic suspension, the optimum design can be established.

A Convergence Study by Structural Analysis on Torsion Beam Suspension of Rear Wheel (후륜 토션빔 서스펜션에 대한 구조해석에 의한 융합연구)

  • Choi, Gye-Gwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.9
    • /
    • pp.187-192
    • /
    • 2019
  • In this study, the structural and fatigue analyses were carried out according to the configuration of rear wheel suspension of torsion beam. Three types of models similar to the actual torsional beam suspension are analyzed and we will find out which one is best on strength. The models of torsion beam suspension were designed in three types of models A, B and C through CATIA program and the results of structural and fatigue analyses were obtained by using the ANSYS program. We will confirm which model is better structurally than other models. According to the analysis results, the deformation happens to be the largest in the middle, and model B has the least deformation compared to model A and C. Similarly, model B is shown to have the smallest result at equivalent stress. So, model B is judged to be the best in terms of its strength, and it is thought to be the most efficient to converge into art design at the suspension design with a torsion beam of rear wheel.

A Basic Study on Plastic Suspension System for Automotive Seat under Consideration of Body Pressure Distribution (체압 분포를 고려한 자동차 시트용 플라스틱 서스펜션에 대한 기초적 연구)

  • Park, Dae-Min;Kim, Key-Sun;Choi, Doo-Seuk;Kim, Sei-Whan;Park, Won-Sik;Cho, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.4751-4755
    • /
    • 2011
  • This study investigates the plastic suspension assembly which is installed on inside of vehicle seat and support passenger's back to supply the comfortable ride performance. It aims to develop the structural design in order to support driver's back uniformly and assemble seat back frame with plastic suspension effectively. The part of suspension is designed by considering the body pressure distribution of driver and it has the same size as the practical model on simulation analysis. It is confirmed that the analysis result of plastic suspension approaches the practical measured values and the better body pressure distribution can be obtained as compared with the existing wire type.

e-Engineering Framework to Support Collaborative Design of Automotive Suspension Systems (협업설계를 위한 엔지니어링 프레임워크 개발에 관한 연구 -자동차 서스펜션 모듈에의 적용-)

  • Park, Seong-Whan;Lee, Jai-Kyung;Lee, Han-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.6
    • /
    • pp.555-561
    • /
    • 2008
  • This paper describes an e-Engineering framework to support collaborative design of automotive suspension systems developed at KIMM(Korea Institute of Machinery and Materials). The e-Engineering framework is proposed and developed on the base of the multi-layered software agents including engineering task agent which is generated from the domain knowledge of experts. The developed framework is aim to widely spread application to the small and medium enterprises by adopting open source technologies such as JADE (Java Agent Development Framework) and by using the independent characteristics related with applicant H/W and 81W system. This framework can provide an integrated design environment to support distributed personnel, design activities and engineering resources during product development process. For the validation of the system's applicability and efficiency, the several practical design processes for automotive suspension systems of RR/FR lower arms and RR cross member are applied and discussed.

Evaluation of Ride Quality and Improvement of a Farm Tractor (농업용 트랙터의 승차감 평가 및 개선방향)

  • 김태형;김선웅;홍부성;박세진
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2002.05a
    • /
    • pp.164-170
    • /
    • 2002
  • 현재 농업용 장비들은 특성상 사용자에게 심한 양의 진동을 가하고 있다. 이는 사용자에게 나쁜 승차감을 주고 또한 장시간 운전시에는 건강에도 좋지 않은 영향을 줄 수 있다. 본 연구에서는 농업용 트랙터에서 사용자에게 전달되는 진동의 양을 측정하여 사용자가 느끼는 승차감을 정량적으로 측정하고 또한 건강에 미칠 수 있는 영향에 대해 평가해 보았다. 실험은 포장도로와 농로 그리고 논갈기 작업시에 인체에 전달되는 12축의 진동을 측정하였고, 또한 트랙터에 사용되는 서스펜션 시트의 특성을 보기 위해 시트 아래의 수직방향 진동을 측정하였다 실험에 참가한 피실험자는 모두 현재 트랙터를 사용하고 있는 4명을 대상으로 하였다 실험 결과 현재의 트랙터는 사용자에게 좋지 않은 승차감을 주고 있으며 건강에도 좋지 않은 환경을 제공하고 있음을 볼 수 있었다. 이러한 환경을 개선하기 위해서는 서스펜션 시트의 설계가 중요하게 되는데 보다 좋은 승차감을 제공하기 위해서는 인간이 민감하게 느끼고 또 트랙터에서 많은 양이 나타나는 주파수 대역의 진동을 저감하기 위한 설계가 필요하다고 할 수 있다.

  • PDF

A Study on Determination of Suspension Spring Coefficient of Electric UTV for Agricultural Use through Virtual Simulation (가상 시뮬레이션을 통한 농업용 전동 UTV의 서스펜션 스프링 계수 결정 연구)

  • Kim, Sang Cheol;Kim, Seong Hoon;Kim, Seung Wan
    • Smart Media Journal
    • /
    • v.11 no.5
    • /
    • pp.75-81
    • /
    • 2022
  • In order to respond to carbon neutrality and climate change in agriculture, agricultural machinery, which has been developed centered on internal combustion engines, needs to be converted to an electric-based technology that does not emit greenhouse gases. In this study, simulations for electric UTV suspension design were performed to reduce vibration and shock of electric UTV for agricultural use and to improve driving stability and control performance of the vehicle. The simulation was performed by dividing the tolerance load of the vehicle body and the loaded load state. The range of motion of the suspension spring of UTV is within 30% of the range of motion under condition B under tolerance, the displacement of the UTV suspension with full load is reduced from 264mm to 121mm, and the damping speed is 260mm/s to 300mm/s that it can be seen that the range of motion is within 60%. Suspension design of electric UTV for multi-purpose agricultural work is a very important factor for maintaining agricultural work ability in towing work such as tillage as well as driving and terrain adaptation. The results of this study can be usefully used to determine the spring parameters with the appropriate damping range so that the electric UTV can be used for various agricultural tasks.

Study on Vibration and Fatigue Analysis for Plastic Suspension Mat of Automotive Seat (자동차 시트의 플라스틱 서스펜션 매트의 진동과 피로해석에 관한 연구)

  • Choi, Hae-Kyu;Kim, Key-Sun;Kim, Sei-Hwan;Cho, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.2
    • /
    • pp.504-509
    • /
    • 2012
  • Automotive suspension mat is installed at seat back frame. As the back part of passenger is aupported by suspension mat, it is prevented from the pressure concentration. The tired feeling at driving is minimized and the comfortable feeling is increased. In this study, vibration and fatigue are analyzed with plastic suspension mat modelled by 3 Dimension. By the analysis result, the natural frequency becomes 30 Hz with life of $10^6$ cycle and safety factor of 1.6055. Development time and evaluation cost can be cut down by utilizing this analytical technique.

A Study on Adopting Active Suspension Control in Sky Hook System (스카이훅 시스템에의 능동 서스펜션 제어 이론 적용에 관한 연구)

  • Park Jung-Hyen;Jang Seung-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.5
    • /
    • pp.950-955
    • /
    • 2006
  • This paper prosed modelling and design method in suspension system sesign to analyze sky hook damper system by adopting active suspension control theory. Recent in the field of suspension system design it is general to adopt active control scheme for stiffness and damping, and connection with other vehicle stability control equipment is also intricate, it is required for control system scheme to design more robust, higher response and precision control equipment. It is hon that sky hook suspension system is better than passive spring-damper system in designing suspension equipment. We analyze location of damper in sky hook system and its motion equation then design robust control system. Numerical example is shown for validity of robust control system design in active sky hook suspension system.