• Title/Summary/Keyword: 서비스데이터

Search Result 10,769, Processing Time 0.042 seconds

Analysis of Trends in Education Policy of STEAM Using Text Mining: Comparative Analysis of Ministry of Education's Documents, Articles, and Abstract of Researches from 2009 to 2020 (텍스트 마이닝을 활용한 융합인재교육정책 동향 분석 -2009년~2020년 교육부보도, 언론보도, 학술지 초록 비교분석-)

  • You, Jungmin;Kim, Sung-Won
    • Journal of The Korean Association For Science Education
    • /
    • v.41 no.6
    • /
    • pp.455-470
    • /
    • 2021
  • This study examines the trend changes in keywords and topics of STEAM education from 2009 to 2020 to derive future development direction and education implications. Among the collected data, 42 cases of Ministry of Education's documents, 1,534 cases of articles, and 880 cases of abstract of researches were selected as research subjects. Keyword analysis, keyword network and topic modeling were performed for each stage of STEAM education policy through the Python program. As a result of the analysis, according to the STEAM education policy stage, there were differences in the frequency and network of keywords related to STEAM education by media. It was confirmed that there was a difference in interest in STEAM education policy as there were differences in keywords and topics that were mainly used importantly by media. Most of the topics of the Ministry of Education's documents were found to correspond to topics derived from articles. The implications for the development direction of STEAM education derived from the results of this study are as follows: first, STEAM education needs to consider ways to connect multiple topics, including the humanities. Second, since the media has a difference in interest in STEAM education policy, it is necessary to seek a cooperative development direction through understanding this. Third, the Ministry of Education's support for core competency reinforcement and convergence literacy for nurturing future talents, the goal of STEAM education, and the media's efforts to increase the public's understanding of STEAM education are required. Lastly, it is necessary to continuously analyze the themes that will appear in the evaluation process and change STEAM education policy.

Analysis of the Weight of SWOT Factors of Korean Venture Companies Based on the Industry 4.0 (4차 산업혁명 기반 한국 벤처기업의 SWOT요인에 대한 중요도 분석)

  • Lee, Dongik;Lee, Sangsuk
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.16 no.4
    • /
    • pp.115-133
    • /
    • 2021
  • This study examines the concept and related technologies of the 4th industrial revolution that has been mixed so far and examines the socio-economic changes and influences resulting from it, and the cases of responding to the 4th industrial revolution in major countries. Based on this, by deriving SWOT factors and calculating the importance of each factor for Korean venture companies to prepare for the forth industrial revolution, it was intended to help the government and policymakers in suggesting directions for establishing related policies. Furthermore, the purpose of this study was to suggest a direction for securing global competitiveness to Korean venture entrepreneurs and to help with basic and systematic analysis for further academic in-depth research. For this study, a total of 21 items derived through extensive literature research and data research to understand what are the necessary competency factors for internal and external environmental changes in order for Korean venture companies to have global competitiveness in the era of the 4th Industrial Revolution. After reviewing SWOT factors by three expert groups and confirming them through Delphi survey, the importance of each item was analyzed by using AHP, a systematic decision-making technique. As a result of the analysis, it was shown that Strength(48%), Opportunity(25%), Threat(16%), Weakness(11%) were considered important in order. In terms of sub-items, 'quick and flexible commercialization capability', 'platform/big data/non-face-to-face service activation', and 'ICT infrastructure and it's utilization' were shown to be of the comparatively high importance. On the other hand, in the lower three items, 'macro-economic stability and social infrastructure', 'difficulty in entering overseas markets due to global protectionism', and 'absolutely inferior in foreign investment' were found to have low priority. As a result of the correlation verification by item to see differences in opinions by industry, academia, and policy expert groups, there was no significant difference of opinion, as industry and academic experts showed a high correlation and industry experts and policy experts showed a moderate correlation. The correlation between the academic and policy experts was not statistically significant (p<0.01), so it was analyzed that there was a difference of opinion on importance. This was due to the fact that policy experts highly valued 'quick and flexible commercialization', which are strengths, and 'excellent educational system and high-quality manpower' and 'creation of new markets' which are opportunity items, while academic experts placed great importance on 'support part of government policy', which are strengths. The implication of this study is that in order for Korean venture companies to secure competitiveness in the field of the 4th industrial revolution, it is necessary to have a policy that preferentially supports the relevant items of strengths and opportunity factors. The difference in the details of strength factors and opportunity factors, which shows a high level of variability, suggests that it is necessary to actively review it and reflect it in the policy.

Derivation of Green Infrastructure Planning Factors for Reducing Particulate Matter - Using Text Mining - (미세먼지 저감을 위한 그린인프라 계획요소 도출 - 텍스트 마이닝을 활용하여 -)

  • Seok, Youngsun;Song, Kihwan;Han, Hyojoo;Lee, Junga
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.5
    • /
    • pp.79-96
    • /
    • 2021
  • Green infrastructure planning represents landscape planning measures to reduce particulate matter. This study aimed to derive factors that may be used in planning green infrastructure for particulate matter reduction using text mining techniques. A range of analyses were carried out by focusing on keywords such as 'particulate matter reduction plan' and 'green infrastructure planning elements'. The analyses included Term Frequency-Inverse Document Frequency (TF-IDF) analysis, centrality analysis, related word analysis, and topic modeling analysis. These analyses were carried out via text mining by collecting information on previous related research, policy reports, and laws. Initially, TF-IDF analysis results were used to classify major keywords relating to particulate matter and green infrastructure into three groups: (1) environmental issues (e.g., particulate matter, environment, carbon, and atmosphere), target spaces (e.g., urban, park, and local green space), and application methods (e.g., analysis, planning, evaluation, development, ecological aspect, policy management, technology, and resilience). Second, the centrality analysis results were found to be similar to those of TF-IDF; it was confirmed that the central connectors to the major keywords were 'Green New Deal' and 'Vacant land'. The results from the analysis of related words verified that planning green infrastructure for particulate matter reduction required planning forests and ventilation corridors. Additionally, moisture must be considered for microclimate control. It was also confirmed that utilizing vacant space, establishing mixed forests, introducing particulate matter reduction technology, and understanding the system may be important for the effective planning of green infrastructure. Topic analysis was used to classify the planning elements of green infrastructure based on ecological, technological, and social functions. The planning elements of ecological function were classified into morphological (e.g., urban forest, green space, wall greening) and functional aspects (e.g., climate control, carbon storage and absorption, provision of habitats, and biodiversity for wildlife). The planning elements of technical function were classified into various themes, including the disaster prevention functions of green infrastructure, buffer effects, stormwater management, water purification, and energy reduction. The planning elements of the social function were classified into themes such as community function, improving the health of users, and scenery improvement. These results suggest that green infrastructure planning for particulate matter reduction requires approaches related to key concepts, such as resilience and sustainability. In particular, there is a need to apply green infrastructure planning elements in order to reduce exposure to particulate matter.

A study of Artificial Intelligence (AI) Speaker's Development Process in Terms of Social Constructivism: Focused on the Products and Periodic Co-revolution Process (인공지능(AI) 스피커에 대한 사회구성 차원의 발달과정 연구: 제품과 시기별 공진화 과정을 중심으로)

  • Cha, Hyeon-ju;Kweon, Sang-hee
    • Journal of Internet Computing and Services
    • /
    • v.22 no.1
    • /
    • pp.109-135
    • /
    • 2021
  • his study classified the development process of artificial intelligence (AI) speakers through analysis of the news text of artificial intelligence (AI) speakers shown in traditional news reports, and identified the characteristics of each product by period. The theoretical background used in the analysis are news frames and topic frames. As analysis methods, topic modeling and semantic network analysis using the LDA method were used. The research method was a content analysis method. From 2014 to 2019, 2710 news related to AI speakers were first collected, and secondly, topic frames were analyzed using Nodexl algorithm. The result of this study is that, first, the trend of topic frames by AI speaker provider type was different according to the characteristics of the four operators (communication service provider, online platform, OS provider, and IT device manufacturer). Specifically, online platform operators (Google, Naver, Amazon, Kakao) appeared as a frame that uses AI speakers as'search or input devices'. On the other hand, telecommunications operators (SKT, KT) showed prominent frames for IPTV, which is the parent company's flagship business, and 'auxiliary device' of the telecommunication business. Furthermore, the frame of "personalization of products and voice service" was remarkable for OS operators (MS, Apple), and the frame for IT device manufacturers (Samsung) was "Internet of Things (IoT) Integrated Intelligence System". The econd, result id that the trend of the topic frame by AI speaker development period (by year) showed a tendency to develop around AI technology in the first phase (2014-2016), and in the second phase (2017-2018), the social relationship between AI technology and users It was related to interaction, and in the third phase (2019), there was a trend of shifting from AI technology-centered to user-centered. As a result of QAP analysis, it was found that news frames by business operator and development period in AI speaker development are socially constituted by determinants of media discourse. The implication of this study was that the evolution of AI speakers was found by the characteristics of the parent company and the process of co-evolution due to interactions between users by business operator and development period. The implications of this study are that the results of this study are important indicators for predicting the future prospects of AI speakers and presenting directions accordingly.

Label Embedding for Improving Classification Accuracy UsingAutoEncoderwithSkip-Connections (다중 레이블 분류의 정확도 향상을 위한 스킵 연결 오토인코더 기반 레이블 임베딩 방법론)

  • Kim, Museong;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.175-197
    • /
    • 2021
  • Recently, with the development of deep learning technology, research on unstructured data analysis is being actively conducted, and it is showing remarkable results in various fields such as classification, summary, and generation. Among various text analysis fields, text classification is the most widely used technology in academia and industry. Text classification includes binary class classification with one label among two classes, multi-class classification with one label among several classes, and multi-label classification with multiple labels among several classes. In particular, multi-label classification requires a different training method from binary class classification and multi-class classification because of the characteristic of having multiple labels. In addition, since the number of labels to be predicted increases as the number of labels and classes increases, there is a limitation in that performance improvement is difficult due to an increase in prediction difficulty. To overcome these limitations, (i) compressing the initially given high-dimensional label space into a low-dimensional latent label space, (ii) after performing training to predict the compressed label, (iii) restoring the predicted label to the high-dimensional original label space, research on label embedding is being actively conducted. Typical label embedding techniques include Principal Label Space Transformation (PLST), Multi-Label Classification via Boolean Matrix Decomposition (MLC-BMaD), and Bayesian Multi-Label Compressed Sensing (BML-CS). However, since these techniques consider only the linear relationship between labels or compress the labels by random transformation, it is difficult to understand the non-linear relationship between labels, so there is a limitation in that it is not possible to create a latent label space sufficiently containing the information of the original label. Recently, there have been increasing attempts to improve performance by applying deep learning technology to label embedding. Label embedding using an autoencoder, a deep learning model that is effective for data compression and restoration, is representative. However, the traditional autoencoder-based label embedding has a limitation in that a large amount of information loss occurs when compressing a high-dimensional label space having a myriad of classes into a low-dimensional latent label space. This can be found in the gradient loss problem that occurs in the backpropagation process of learning. To solve this problem, skip connection was devised, and by adding the input of the layer to the output to prevent gradient loss during backpropagation, efficient learning is possible even when the layer is deep. Skip connection is mainly used for image feature extraction in convolutional neural networks, but studies using skip connection in autoencoder or label embedding process are still lacking. Therefore, in this study, we propose an autoencoder-based label embedding methodology in which skip connections are added to each of the encoder and decoder to form a low-dimensional latent label space that reflects the information of the high-dimensional label space well. In addition, the proposed methodology was applied to actual paper keywords to derive the high-dimensional keyword label space and the low-dimensional latent label space. Using this, we conducted an experiment to predict the compressed keyword vector existing in the latent label space from the paper abstract and to evaluate the multi-label classification by restoring the predicted keyword vector back to the original label space. As a result, the accuracy, precision, recall, and F1 score used as performance indicators showed far superior performance in multi-label classification based on the proposed methodology compared to traditional multi-label classification methods. This can be seen that the low-dimensional latent label space derived through the proposed methodology well reflected the information of the high-dimensional label space, which ultimately led to the improvement of the performance of the multi-label classification itself. In addition, the utility of the proposed methodology was identified by comparing the performance of the proposed methodology according to the domain characteristics and the number of dimensions of the latent label space.

Are you a Machine or Human?: The Effects of Human-likeness on Consumer Anthropomorphism Depending on Construal Level (Are you a Machine or Human?: 소셜 로봇의 인간 유사성과 소비자 해석수준이 의인화에 미치는 영향)

  • Lee, Junsik;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.129-149
    • /
    • 2021
  • Recently, interest in social robots that can socially interact with humans is increasing. Thanks to the development of ICT technology, social robots have become easier to provide personalized services and emotional connection to individuals, and the role of social robots is drawing attention as a means to solve modern social problems and the resulting decline in the quality of individual lives. Along with the interest in social robots, the spread of social robots is also increasing significantly. Many companies are introducing robot products to the market to target various target markets, but so far there is no clear trend leading the market. Accordingly, there are more and more attempts to differentiate robots through the design of social robots. In particular, anthropomorphism has been studied importantly in social robot design, and many approaches have been attempted to anthropomorphize social robots to produce positive effects. However, there is a lack of research that systematically describes the mechanism by which anthropomorphism for social robots is formed. Most of the existing studies have focused on verifying the positive effects of the anthropomorphism of social robots on consumers. In addition, the formation of anthropomorphism of social robots may vary depending on the individual's motivation or temperament, but there are not many studies examining this. A vague understanding of anthropomorphism makes it difficult to derive design optimal points for shaping the anthropomorphism of social robots. The purpose of this study is to verify the mechanism by which the anthropomorphism of social robots is formed. This study confirmed the effect of the human-likeness of social robots(Within-subjects) and the construal level of consumers(Between-subjects) on the formation of anthropomorphism through an experimental study of 3×2 mixed design. Research hypotheses on the mechanism by which anthropomorphism is formed were presented, and the hypotheses were verified by analyzing data from a sample of 206 people. The first hypothesis in this study is that the higher the human-likeness of the robot, the higher the level of anthropomorphism for the robot. Hypothesis 1 was supported by a one-way repeated measures ANOVA and a post hoc test. The second hypothesis in this study is that depending on the construal level of consumers, the effect of human-likeness on the level of anthropomorphism will be different. First, this study predicts that the difference in the level of anthropomorphism as human-likeness increases will be greater under high construal condition than under low construal condition.Second, If the robot has no human-likeness, there will be no difference in the level of anthropomorphism according to the construal level. Thirdly,If the robot has low human-likeness, the low construal level condition will make the robot more anthropomorphic than the high construal level condition. Finally, If the robot has high human-likeness, the high construal levelcondition will make the robot more anthropomorphic than the low construal level condition. We performed two-way repeated measures ANOVA to test these hypotheses, and confirmed that the interaction effect of human-likeness and construal level was significant. Further analysis to specifically confirm interaction effect has also provided results in support of our hypotheses. The analysis shows that the human-likeness of the robot increases the level of anthropomorphism of social robots, and the effect of human-likeness on anthropomorphism varies depending on the construal level of consumers. This study has implications in that it explains the mechanism by which anthropomorphism is formed by considering the human-likeness, which is the design attribute of social robots, and the construal level of consumers, which is the way of thinking of individuals. We expect to use the findings of this study as the basis for design optimization for the formation of anthropomorphism in social robots.

The Distribution and Characteristics of Protected Areas and Natural Resources in the Metropolitan Area in Blog Posts (블로그 게시물에 나타난 수도권 보전지역 및 자연자원의 분포 및 특성)

  • Lee, Sung-Hee;Son, Yong-Hoon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.5
    • /
    • pp.30-39
    • /
    • 2022
  • This study aimed to evaluate the awareness of conservation areas and green resources and analyze their characteristics by utilizing accumulated blog data created for specific places and objects. Among all the conservation areas and resources located in the Seoul metropolitan area, places that can be evaluated were classified, and sites were evaluated by dividing them into ten categories based on the number of blog posts written. As a result of the study, the users' awareness of forests was the highest, and the awareness of conservation areas and green resources was higher in urban areas than suburban areas. The result shows that the conservation areas and green resources located around the metropolitan area serve as natural tourist destinations while being the object of conservation for users. In addition, these results are in the same vein as the research results in domestic and foreign studies on the importance of ecosystem services in urban areas. Unlike existing research methods, this study is meaningful in that it identified the level of user awareness through social media analysis and applied it to evaluating conservation areas and green resources. It can be used as basic data to prepare a management plan considering public interest and awareness or to establish a development plan to increase awareness. In addition, the cumulative amount of blog content used in the study is meaningful in that it can identify and monitor users' interest in the space. However, it was not possible to examine the contents of each blog in detail because it was evaluated based on the amount of social media content. In addition, in the case of conservation areas and green resources, it is necessary to review and supplement the evaluation contents by adding keyword analysis and content analysis for the site to be evaluated as content other than the pure viewpoint of users may be mixed with development issues.

Conjunction Assessments of the Satellites Transported by KSLV-II and Preparation of the Countermeasure for Possible Events in Timeline (누리호 탑재 위성들의 충돌위험의 예측 및 향후 상황의 대응을 위한 분석)

  • Shawn Seunghwan Choi;Peter Joonghyung Ryu;John Kim;Lowell Kim;Chris Sheen;Yongil Kim;Jaejin Lee;Sunghwan Choi;Jae Wook Song;Hae-Dong Kim;Misoon Mah;Douglas Deok-Soo Kim
    • Journal of Space Technology and Applications
    • /
    • v.3 no.2
    • /
    • pp.118-143
    • /
    • 2023
  • Space is becoming more commercialized. Despite of its delayed start-up, space activities in Korea are attracting more nation-wide supports from both investors and government. May 25, 2023, KSLV II, also called Nuri, successfully transported, and inserted seven satellites to a sun-synchronous orbit of 550 km altitude. However, Starlink has over 4,000 satellites around this altitude for its commercial activities. Hence, it is necessary for us to constantly monitor the collision risks of these satellites against resident space objects including Starlink. Here we report a quantitative research output regarding the conjunctions, particularly between the Nuri satellites and Starlink. Our calculation shows that, on average, three times everyday, the Nuri satellites encounter Starlink within 1 km distance with the probability of collision higher than 1.0E-5. A comparative study with KOMPSAT-5, also called Arirang-5, shows that its distance of closest approach distribution significantly differs from those of Nuri satellites. We also report a quantitative analysis of collision-avoiding maneuver cost of Starlink satellites and a strategy for Korea, being a delayed starter, to speed up to position itself in the space leading countries. We used the AstroOne program for analyses and compared its output with that of Socrates Plus of Celestrak. The two line element data was used for computation.

An Empirical Investigation of Relationship Between Interdependence and Conflict in Co-marketing Alliance (공동마케팅제휴에 있어 상호의존성과 갈등의 관계에 대한 연구)

  • Yi, Ho Taek;Cho, Young Wook;Kim, Ju Young
    • Asia Marketing Journal
    • /
    • v.13 no.3
    • /
    • pp.79-102
    • /
    • 2011
  • Researchers in channel dyads have devoted much attention to relationship between interdependence (i.e. interdependence enymmetry and total interdependence) and conflict that promote channel performance. In social science, in spite of the inconsistent results in marketing practice, there are two contradictory theories explain the relationship between interdependence and conflict - bilateral deterrence theory and conflict spiral theory. The authors apply these theories to co-marketing alliance situation in terms that this relationship is also incorporated both company's dependence, either from one company's perspective or each partner about its respective dependence. Using survey data and archival data from 181 companies enlisted in a telecommunication membership program, the authors find out the relationship between interdependence and conflict as well as investigate the antecedents of interdependence - transaction age, transaction frequency, the numbers of alliance partner, and co-marketing alliance specific assets according to previous researches. Using PLS analysis, the authors demonstrate that, with increasing total interdependence in a telecommunication membership program, two co-marketing partners' conflict level is increased in accord with the author's conflict spiral theory predictions. As expected, higher interdependence asymmetry has negative value to level of conflict even though this result is not statistically significant. Other findings can be summarized as follows. In the perspective of telecommunication company, transaction age, transaction frequency, and co-marketing alliance specific assets have influence on its dependence on a partner as independent variables. To the contrary, in a partner's perspective, transaction frequency, co-marketing alliance specific assets and the numbers of alliance partner have significantly impact on its dependence on a telecommunication company. In direct effect analysis, it is shown that transaction age, frequency and co-marketing alliance specific assets have direct influence on conflict. This results suggest that it is more useful for a telecommunication company to select a co-marketing partner which is frequently used by customers and earned high rates of mileage. In addition, the results show that dependence of a telecommunication company on a co-marketing partner is more significantly effected to co-marketing alliance conflict than partner's one. It provide an effective conflict management strategy to a telecommunication company for controling customer's usage rate or having the co-marketing partner deposit high level of alliance specific investment (i.e. mileage). To a co-marketing partner of telecommunication company, it is required control the percentage of co-marketing sales in total sales revenue or seek various co-marketing partners in order for co-marketing conflict management. The research implications, limitation and future research of these results are discussed.

  • PDF

A Study on the Effectiveness of 3PL Logistics Information System : A Focus on the Role of Supply Chain Performance in Shipper and Long-term Relationship intention (3PL 물류정보시스템의 효과성에 관한 실증적 연구 : 화주기업의 공급사슬성과와 장기지향적관계성의 역할을 중심으로)

  • Cho, Jae-yong
    • Journal of Venture Innovation
    • /
    • v.3 no.2
    • /
    • pp.111-128
    • /
    • 2020
  • Recently, in the process of globalization of companies, the use of third party logistics providers (3PL) has been strengthened. Therefore, the purpose of this study is to test the effectiveness of the logistics information system provided by 3PL companies. This study is to test the relationship between the effect of the characteristics of the 3PL logistics information system on the shipper's supply chain performance, that is, logistics performance, customer performance, and organizational performance, and the shipper's loyalty to the 3PL company, that is, 3PL corporate performance. In addition, long-term relationship orientation is to test whether there is a moderating effect between the shipper company and the 3PL company. Through this, this study aims to provide strategic implications for improving the competitiveness of 3PL companies. In this study, a total 205 data were collected and used for analysis of shippers companies for hypothesis testing, and analyzed using SPSS 21.0 and AMOS 21.0 statistical programs. The results of the study are summarized as follows. First, it was found that the accuracy, timeliness, and usefulness of the 3PL logistics information system all had a significant positive (+) effect on the performance of the shipper's supply chain. Second, it was found that the accuracy, timeliness, and usefulness of the 3PL logistics information system all had a significant positive (+) effect on 3PL corporate performance. Third, it was found that the performance of the supply chain of the shipper company had a significant positive (+) effect on the performance of the 3PL company. Finally, it was found that long-term relationship orientation had a moderating effect on the relationship between the performance of the shipper company's supply chain and the performance of the 3PL company. The purpose of this study is to provide academic and practical implications for securing competitive advantage through the logistics information system of 3PL logistics companies.