• Title/Summary/Keyword: 생체 임피던스

Search Result 122, Processing Time 0.029 seconds

Removal of Residual Stress and In-vitro Recording Test in Polymer-based 3D Neural Probe (폴리머 기반 3차원 뉴런 프로브의 잔류 스트레스 제거 및 생체 외 신호 측정)

  • Nam, Min-Woo;Lim, Chun-Bae;Lee, Kee-Keun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.2
    • /
    • pp.33-42
    • /
    • 2009
  • A polymer-based flexible neural probe was fabricated for monitoring of neural activities from a brain. To improve the insertion stiffness, a 5 ${\mu}m$ thick biocompatible Au layer was electroplated between the top and bottom polymer layers. The developed neural probe penetrated a gel whose elastic modulus is similar to that of a live brain tissue without any fracture, To minimize mechanical residual stress and bending from the probe, two new methods were employed: (1) use of a thermal annealing process after completing the device and (2) incorporation of multiple different layers to compensate the residual stress between top and bottom layers. Mechanical bending around the probe tip was clearly removed after employing the two processes. In electrical test, the developed probe showed a proper impedance value to record neural signals from a brain and the result remained the same for 72 hours. In simple in-vitro probe characterization, the probe showed a great removal of residual stress and an excellent recording performance. The in-vitro recording results did not change even after 1 week, suggesting that this electrode has the potential for great recording from neuron firing and long-term implant performance.

  • PDF

Improved negative capacitance circuit stable with a low gain margin (이득 여유가 작아도 안정한 개선된 네가티브 커패시턴스 회로)

  • 김영필;황인덕
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.6
    • /
    • pp.68-77
    • /
    • 2003
  • An improved negative capacitance circuit that cancels out input impedance of a front-end in a bioimpedance measurement and operates stably with a low gain margin has been proposed. Since the proposed circuit comprises wide-band operational amplifiers, selecting operational amplifiers is easy, while an operational amplifier of prefer bandwidth should be chosen to apply conventional circuit. Also, since gain margin can be controlled by a feedback resistor connected serially with a feedback capacitor, gain margin is tuneable with a potentiometer. The input impedance of the proposed circuit is two times larger than that of the conventional circuit and 40-times than that without a negative capacitance circuit. Furthermore, closed-loop phase response of the proposed circuit is better than that of the conventional circuit or without a negative capacitance circuit. Above all, for the proposed circuit, the frequency at which a gain peaking occurs is higher than the frequency at which the loop gain becomes a maximum. Thus, the proposed circuit is not affected by a gain peaking and can be operated with a very low gain margin.

The implementation of modular respiratory system for patient monitoring (환자감시를 위한 모듈형 호흡 시스템의 구현)

  • 박종억;김영길
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.503-506
    • /
    • 2001
  • There are four factors for patient monitoring : electrocardiography, blood pressure, temperature and respiration. While there are a lot of studies of E.C.C (electro-cardiography) monitoring system in the world, the studies of Respiratory system are not enough and leave much to be desired in the country. In this paper, we developed a respiratory system with the electrical impedance change of the lungs depending on the breath. Using the same electrode, we can monitor E.C.C and Respiration simultaneously, so we can monitor a patient's no-breathing state due to the central nerve paralysis in the emergency room easily. In this monitoring system, the analog part was made separated from the digital part for reducing power source noise and protecting patient from electric shock. The analog part consists of the several parts a high-frequency sine-wave generator, all amplifier for amplifying any impedance change signal, an analog processing part for rectifying and filtering. And the digital parts consists of three parts an AD convertor for converting analog signal to digital signal, digital filter, and a digital part for digital signal processing. This system's merits are using the same electrode with E.C.C and developing the multiple patient monitoring system easily.

  • PDF

Synergistic Effect of Oxygen Pressure and Sonophoresis for Skin Permeability (산소 압력과 초음파를 이용한 피부투과도 증대에 관한 연구)

  • 차민석;이철규;윤영로;이원수
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.189-196
    • /
    • 2002
  • Transdermal drug delivery offers an alternative method to the conventional oral and injection delivery method. Its advantages include its ability to deliver drugs directly into systemic circulation. However, there have been restrictions in its application to deliver drugs because of the skin's barrier function. In this study, we try to combine a Sonophoresis and oxygen Pressure method in order to increase the Permeability of the skin. we used water as the compound and by utilizing the skin impedance method. we measured the hydration Permeability of skin Ultrasound was applied using a sonicator(Solcare-U1000. Solco, Korea) operating at a frequency of 1MHz. oxygen Pressure was applied using a compressor(Oxyjet-Pointer, Nora Bode. Germany) operating at a pressure of 2Bar/cm2. Experiment was performed in vivo for 42 People. We divided the subjects into four smaller groups. A different transdermal drug delivery method was applied for each group on the back of their hand. We measured the skin impedance variations on the hand. during a 20-minute time Period. The control group did not show any significant increase or variation of skin impedance to water. In comparison to the control group(Passive diffusion) the hydration Permeability of the ultrasound group and the oxygen Pressure group was approximately 25 and 30 times higher consecutively. Futhermore, the hydration permeability of the combination of ultrasound and oxygen Pressure group was about 70-fold higher in comparison to the control group(passive diffusion) . The results reveal that a combination of ultrasound and oxygen Pressure will significantly enhance transdermal water transport compared when only one of them is used.

Multi-Frequency Electrical Impedance Tomography System (다주파수 임피던스 단층촬영 시스템)

  • Oh, Tong-In;Cho, Seong-Phil;Kim, Sang-Min;Koo, Hwan;Woo, Eung-Je
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.1
    • /
    • pp.66-74
    • /
    • 2007
  • We have developed a multi-channel, multi-frequency EIT system with operating frequency of 10Hz to 500KHz. The number of digital voltmeters using phase-sensitive demodulation can be varied from 8 to 64 and we found that 16 and 32-channels are most practical. This paper describes the design, implementation, and construction of 16 and 32-channel systems. The performance of the system was thoroughly tested and we found that CMRR of the developed voltmeter is about 85dB with $100{\Omega}$ unbalancing series resistor. The SNR is greater than 99.6dB and the output impedance of the constant current source is $1{\Omega}W$ at least for all frequencies. Imaging experiments using a banana with frequency-dependent conductivity and permittivity show that frequency-difference imaging is possible using the developed system. Future works of animal and human experiments are discussed.

Measurement of cardiac output during treadmill exercise by impedance cardiography with a new ensemble average (새로운 앙상블 평균법에 의한 임피던스 심장기록법의 트래드밀 운동 중의 심박출량 측정)

  • Kim, Deok-W.;Song, Chul-G.;Oh, In-S.;Hwang, Soo-K.;Kim, Won-K.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1990 no.05
    • /
    • pp.7-8
    • /
    • 1990
  • In this study, a new ensemble average technique was developed to measure cardiac output during treadmill exercise. Each dZ/dt peak (C point) was used as a starting point for ensemble averaging, instead of conventionally used R wave of ECG in order to prevent the peak dZ/dt waveform from blurring. In ease of using R wave as a reference, time interval from R wave to the peak of dZ/dt varies for each heart beat. Stroke volume, heart rate, and cardiac output of five male were successfully measured with Balke protocol using the new ensemble average technique.

  • PDF

Design of Apnea Monitoring System by impedance technique (임피던스를 이용한 무호흡감시 시스템 설계)

  • Park, S.B.;Jeon, D.K.;Yoon, H.R.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.232-235
    • /
    • 1997
  • Apnea refers to episode of apnea (or not breathing) lasting more than 10 seconds that occur while sleeping. These episodes, whitch can occur hundreds of times per night, may transiently awaken resulting in fragmentation of sleep. Although the precise cause of Sudden Infant Death Syndrome(SIDS) are still unclear, there is evidence to suggest that hypoxaemia may be a contributory actor. Transcutaneous oxygen monitor can be used, but it is very difficult to use or baby stayed at home. In this reason, monitors whitch is easy or deal with are reqiured. In 1972, Steinschieder reported that two of the five infants noted to have apnea lasting or more than 20 seconds later died of SIDS episode, he also suggested that home monitoring or neonates should be used or managing apnea at home. Transthoracic electrical impedance technique is used or acquiring respiration waveform and detecting episode of apnea state. Transthoracic electrical impedance measurements have been made from the human trunk over the frequency range 9.6KHz to 614KHz. We conclude that application of impedance technique or detecting apnea state is proper or neonates.

  • PDF

Development of Frequency Dependent Type Apex-Locator Improvementation by Auto-calibration Using Impedance Difference (주파수 의존형 전자근관장측정기 개발 및 임피던스차를 이용한 자동보정에 의한 성능향상)

  • Nam, K.C.;Kim, S.C.;Kim, D.W.;Lee, S.J.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.399-402
    • /
    • 1997
  • It is important to find a accurate root canal length or successful endodontic therapy. By X-ray method takes a long time and difficult in a curved canal. After developed electronic apex locator has allowed to measure the root canal length with easy, in a short time also in a curved canal. But most electronic apex locators have the disadvantage which is too short reading or sometimes the measurement itself becomes impossible if there are electrolytes in the canal. To overcome this drawback, impedance ratio method has been developed. In this study, we have developed frequency dependent electronic apex locator to minimize the interference of electrolytes. And based on that also some error in clinic use, we added the other method. Difference of two signals which are used in calculation of impedance ratio was can be represent the status of root canal fluid. As a result, using impedance ratio method and auto-calibration by voltage difference method can reduce the measurement error.

  • PDF

Automatic Switching System for The Impedance Analysis of Multichannel icroelectrode Arrays: Limits and Improvement Scheme (다채널 미세전극칩 임피던스 분석을 위한 자동 스위칭 시스템: 한계점 및 개선 방안)

  • Lee, Seok-Young;Nam, Yoon-Key
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.3
    • /
    • pp.207-217
    • /
    • 2011
  • Electrode impedances are measured to quantitatively characterize the electrode-electrolyte or cell-electrode interfaces. In the case of high-density microelectrode arrays(MEAs) that have been developed for brainmachine interface applications, the characterization process becomes a repeating and time-consuming task; a system that can perform the measurement and analysis in an automated fashion with accuracy and speed is required. However, due to the large number of channels, parasitic capacitance and off-capacitance components of the switching system become the major factors that decreased the accuracy for the measurement of high impedance microelectrodes. Here we investigated the implementation of automatic impedance measurement system with analyzing the causes of possible measurement-related problems in multichannel switching configuration. Based on our multi-channel measurement circuit model, we suggest solutions to the problems and introduce a novel impedance measurement scheme using electro-mechanical relays. The implemented measurement system could measure |Z| < 700 $k{\Omega}$ of impedance in - 10% errors, which can be widely applicable to high density neural recording MEAs.

Development and Assessment of Conductive Fabric Sensor for Evaluating Knee Movement using Bio-impedance Measurement Method (슬관절 운동 평가를 위한 생체 임피던스 측정용 전도성 섬유센서 개발 및 평가)

  • Lee, Byung-Woo;Lee, Chung-Keun;Cho, Ha-Kyung;Lee, Myoung-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.1
    • /
    • pp.37-44
    • /
    • 2011
  • This paper describes the development and assessment of conductive fabric sensor for evaluating knee movement using bio-impedance measurement method. The proposed strip-typed conductive fabric sensor is compared with a dot-typed Ag/AgCl electrode for evaluating validity under knee movement condition. Subjects are composed of ten males($26.6{\pm}2.591$) who have not had problems on their knee. The strip-typed conductive fabric sensor is analyzed by correlation and reliability between a dot-typed Ag/AgCl electrode and the strip-typed conductive fabric sensor. The difference of bio-impedance between a dot-typed Ag/AgCl electrode and the strip-typed conductive fabric sensor averages $7.067{\pm}13.987\;{\Omega}$ As the p-value is under 0.0001 in 99% of t-distribution, the strip-typed conductive fabric sensor is correlated with a dot-typed Ag/AgCl electrode by SPSS software. The strip-typed conductive fabric sensor has reliability when it is compared with a dot-typed Ag/AgCl electrode because most of bio-impedance values are in ${\pm}1.96$ standard deviation by Bland-Altman Analysis. As a result, the strip-typed conductive fabric sensor can be used for assessing knee movement through bio-impedance measurement method as a dot-typed Ag/AgCl electrode. Futhermore, the strip-typed conductive fabric sensor is available for wearable circumstances, applications and industries in the near future.