• Title/Summary/Keyword: 생체이용도

Search Result 4,835, Processing Time 0.036 seconds

Early Growth of Sweet Pepper by Difference between Day and Night Temperature after Planting (정식 후 주야간온도차에 따른 착색단고추의 초기 생육)

  • Kim, Ho Cheol;Ku, Yang-Gyu;Lee, Yong Beom;Lee, Jeong Hyun;Choi, Joon Ho;Bae, Jong Hyang
    • Horticultural Science & Technology
    • /
    • v.31 no.5
    • /
    • pp.552-557
    • /
    • 2013
  • This study was carried out to investigate the different DIF (day/night temperature differential) treatments on early growth of sweet pepper plants (Capsicum annuum L.) after planting. The DIF treatments were thus as follows. DIF levels are DIF-6 ($20-26^{\circ}C$) and DIF 0 ($23^{\circ}C$), DIF 3 ($24.5-21.5^{\circ}C$) and DIF 6 ($26-20^{\circ}C$). The DIF 3 and DIF 6 treatments significantly increased plant height of the sweet pepper plants during ten weeks after planting compared to DIF-6 and DIF 0. Leaf area per plant of DIF 3 treatment constantly increased and the level was greatest leaf area at ten weeks after planting. Fresh weight per plant treated with DIF-6 was lower and was reduced 74-77% range compared to other treatments. DIF 0 and DIF 3 treatments significantly affected dry weight and percentage of dry matter compared to DIF-6 and DIF 6. Especially DIF 6 treatment significantly decreased from eight weeks after planting. Percentage of dry matter of the leaf treated with DIF 0 and DIF 3 consistently increased from six weeks after planting, however, DIF-6 and DIF 6 treatments dramatically decreased from eight weeks after planting. High levels of DIF management cause growth retardant on early growth of sweet pepper plants, especially when night temperature is higher than day temperature, plants are indicated to be greater growth retardant.

Cellular Protective Effects of Peanut Sprout Root Extracts (땅콩나물 뿌리 추출물의 세포 보호 효과)

  • Jo, Na Rae;Park, Chan Il;Park, Chae Won;Shin, Dong Han;Hwang, Yoon Chan;Kim, Yong Hyun;Park, Soo Nam
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.183-189
    • /
    • 2012
  • In this study, the cellular protective effect and antioxidative property of peanut sprout root extracts were investigated. Cellular protective effects of peanut sprout root extracts on the rose-bengal sensitized photohemolysis of human erythrocytes were investigated. The ethyl acetate fraction of extracts exhibited a cellular protective effect in a concentration dependent manner. Particularly, the aglycone fraction of extracts showed prominent cellular protective effects in a concentration range (5~50 ${\mu}g/mL$). They are more effective than that of (+)-${\alpha}$-tocopherol, known as a lipid peroxidation chain blocker. Reactive oxygen species (ROS) scavenging activities ($OSC_{50}$) of peanut sprout root extracts on ROS generated in $Fe^{3+}$-EDTA/$H_2O_2$ system were investigated using the luminol-dependent chemiluminescence assay. The ethyl acetate fraction of extracts ($OSC_{50}$; 1.59 ${\mu}g/mL$) showed a similar ROS scavenging activity compare with that of L-ascorbic acid (1.50 ${\mu}g/mL$), known as a strong antioxidant. On the other hand, the order of free radical (1,1-diphenyl-2-picrylhydraxyl, DPPH) scavenging activity ($FSC_{50}$) was (+)-${\alpha}$-tocopherol > 80% MeOH extract > aglycone fraction > ethyl acetate fraction. These results indicate that peanut sprout root extracts can function as an antioxidant in biological systems, particularly skin exposed to solar UV radiation by scavenging $^1O_2$ and other ROS, and to protect cellular membranes against ROS.

Light Quality and Photoperiod Affect Growth of Sowthistle (Ixeris dentata Nakai) in a Closed-type Plant Production System (밀폐형 식물생산시스템에서 광질과 광주기에 따른 씀바귀의 생육)

  • Kim, Hye Min;Kang, Jeong Hwa;Jeong, Byoung Ryong;Hwang, Seung Jae
    • Horticultural Science & Technology
    • /
    • v.34 no.1
    • /
    • pp.67-76
    • /
    • 2016
  • This study was conducted to examine the optimal environmental condition for promoting the growth of sowthistle as affected by light quality and photoperiod in a closed-type plant production system. Seeds were sown in 240-cell plug trays and then germinated for 3 days at a 24-hour photoperiod in a closed-type plant production system with LED lights (R:B:W = 8:1:1). Seedlings were transplanted and grown under 3 types of LED (R:B:W = 8:1:1, R:W = 3:7, or R:B = 8:2) and 4 photoperiods (24/0, 16/8, 8/16, or 4/20 hours) with $230{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ light intensity at a density of $20cm{\times}20 cm$. The experimental design was a randomized complete block design. Plants were cultured for 40 days un der the condition of $21{\pm}2^{\circ}C$ and $70{\pm}10%$ relative humidity after transplanting. Plants were fed with a recycling nutrient solution (pH 7.0 and EC $2.0dS{\cdot}m^{-1}$) contained in a deep floating tank. Fresh weight and dry weight of shoot or root, leaf length, and leaf area were the greatest in the photoperiod of 24/0 (light/dark) with RW LED. The highest number of leaves occurred in the photoperiod of 16/8 (light/dark) with RB LED, while the incidence of tip burn was higher in the photoperiod of 24/0 (light/dark) compared to the other treatments. Chlorophyll value was the highest in the 16/8 (light/dark) photoperiod and there was no significant difference by light quality. Chlorophyll fluorescence was the lowest in the photoperiod of 24/0 (light/dark) compared with other treatments. Therefore, in terms of economic feasibility and productivity for Ixeris dentata Nakai cultivation in a closed-type plant production system, the results obtained suggest that plants grew the best when kept in a photoperiod of 16/8 (light/dark) and light quality of combined LED RW (3:7).

Comparison of Plant Growth, Dormancy Breaking, Yield, and Biological Activities of Extracts in Four Asparagus Cultivars (아스파라거스 4 품종의 생장, 휴면타파, 수량 및 추출물의 생리활성 비교)

  • Lee, Jong Won;Heo, Buk Gu;Bae, Jong Hyang;Ku, Yang Gyu
    • Horticultural Science & Technology
    • /
    • v.33 no.5
    • /
    • pp.796-804
    • /
    • 2015
  • The present study investigated the plant growth characteristics, dormancy breaking, yield, and biological activity properties (contents of flavonoid and phenolic compounds, nitrite scavenging activity, and the survival rate of lung cancer) of four asparagus cultivars. It aimed to examine selection possibilities for high efficacy cultivar to promote biological activity in asparagus cultivation in South Korea. The results showed that the number of asparagus buds and root fresh and dry weight of 'Jersey Giant', 'Jersey Supreme', and 'NJ953' were higher than those of 'UC157' cultivar, and there were no differences in the number of roots. The dormancy breaking period of 'Jersey Supreme' was prolonged compared to the other cultivars. 'Jersey Giant' and 'NJ953' had more total spears, and greater spear diameter, and yield than other cultivars. Total flavonoid content was unaffected by cultivar and was higher in ethanol extraction than in hot water extraction. Total phenolic compound content was the lowest in 'NJ953' for both hot water and ethanol extracts, whereas in the ethanol extraction, 'UC157' had the highest, with $39.23mg{\cdot}L^{-1}$. 'Jersey Giant', 'Jersey Supreme', and 'NJ953' all showed greater than 70% nitrite scavenging activity. In the case of ethanol extraction, the survival rates of lung cancer in extracts from 'Jersey Giant', 'Jersey Supreme', and 'UC157' were lower than 'NJ 953' cultivar, regardless of extraction concentration. The survival rate of lung cancer was lower in hot water extraction than in ethanol extraction, so that the consumption of asparagus is also expected to be helpful in preventing lung cancer. The growth characteristics and biological activity effects of edible asparagus that were identified in the present study are expected to be useful in selection of high efficacy cultivars for biological activity and utilization.

The inhibitory Effects of Coenzyme Q10 on Melanogenesis of cultured Human Melanocytes and in vivo Guinea Pig Model (Coenzyme Q10의 멜라닌 생성억제효과)

  • 황재성;박원만;안수미;강병영;이병곤;심영철
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.26 no.1
    • /
    • pp.149-162
    • /
    • 2000
  • Coenzyme Q10 is found in all tissues including skin and it is the well-known coenzyme for mitochondrial enzymes. The electron and proton transfer functions of the quinone ring are of fundamental importance for the oxidative phosphorylation pathway to generate energy in the cells. Coenzyme Q10 has been studied as a potent antioxidant molecule in the skin. It is involved in the skin's response to UVR irradiation. The concentration of this antioxidant in UVR exposed skin is higher than in non-exposed skin. However, recent studies have also shown that coenzyme Q10 is one of the first antioxidants to be depleted when skin is UVR-irradiated. This indicates that coenzyme Q10 is primarily involved in defense mechanisms of the skin. Therefore, we questioned whether coenzyme Q10 shows reulatory effect of melanogenesis. Here we report that coenzyme Q10 inhibits melanin neosynthesis of normal human melanocytes grown in culture, and lightens UVB-induced hyperpigmentation of the guinea pig skin in vivo. We treated human melanocytes with 0.05mM to 0.5mM of coenzyme Q10 for a total of two days. This inhibited melanin neosynthesis of cultured human melanocytes dose-dependently. The inhibitory effect of coenzyme Q10 was as effective as kojic acid or vitamin C on cultured human melanocytes. CoQ10 didn't have direct inhibitory effect on tyrosinase activity in in vitro tyrosine hydroxylase activity To further clarify the effect of coenzyme Q10 on the melanogenesis, we established UVB-induced hyperpigmentation on the shaved backs of brownish guinea pigs. The UVB intensity was 500mJ/$\textrm{cm}^2$ and the total energy dose was 1,500 mJ/$\textrm{cm}^2$. The animals were exposed to UVB radiation one times a week for three consecutive weeks. Coenzyme Q10, kojic acid, Arbutin, vitamin C(1% in vehicle) or vehicle alone as a control were then topically applied daily to the hyperpigmented areas twelve times per week far four successive weeks. The lightening effect was evaluated by visual scoring, chromameter and immunohistochemistry. Coenzyme Q10 had lightening effect on the UVB-induced hyperpigmentation without any other side effects, whereas another compounds showed weak lightening efficacies. Therefore, these results suggest that coenzyme Q10 may be useful for solving physiological hyperpigmenting problems for cosmetic purposes.

  • PDF

Antioxidative Activity and Component Analysis of Quercus glauca Leaf Extracts (종가시나무 잎 추출물의 항산화 활성, 성분 분석)

  • Yang, Hee-Jung;Ahn, You-Jin;Kim, Jae-Hyun;Park, Soo-Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.34 no.3
    • /
    • pp.189-200
    • /
    • 2008
  • In this study, the antioxidative effects, inhibitory effects on elastase, and components of Quercus glauca extracts were investigated. The free radical (1,1-diphenyl-2-picrylhydrazyl, DPPH) scavenging activity $(FSC_{50})$ of extract I fractions of Quercus glauca leaf was in the order: 50% ethanol extract $(12.45{\mu}g/mL)$ < ethyl acetate fraction $(10.47{\mu}g/mL)$ < deglycosylated flavonoid aglycone fraction $(8.57{\mu}g/mL)$. Reactive oxygen species (ROS) scavenging activities $(OSC_{50})$ of some Quercus glauca leaf extracts on ROS generated in $Fe^{3+}-EDTA/H_2O_2$ system were investigated using the luminol-dependent chemiluminescence assay. The order of ROS scavenging activity was 50% ethanol extract $(OSC_{50},\;4.2{\mu}g/mL)$ < deglycosylated flavonoid aglycone fraction $(1.58{\mu}ug/mL)$ < ethyl acetate fraction $(0.66{\mu}g/mL)$. Ethyl acetate fraction showed the most prominent scavenging activity. The protective effects of extract / fractions of Quercus glauca leaf on the rose-bengal sensitized photohemolysis of human erythrocytes were investigated. The Quercus glauca leaf extracts suppressed photohemolysis in a dose dependent manner, particularly deglycosylated flavonoid aglycone fraction exhibited the most prominent celluar protective effect $({\tau}_{50}$, 398.67 min at $50{\mu}g/mL$). Aglycone fractions obtained from the deglycosylation reaction of ethyl acetate fraction among the Quercus glauca leaf extracts, showed 2 bands in TLC and 2 peaks in HPLC experiments (360 nm) as well. Two components were identified as quercetin (55.77%), and kaempferol (44.23 %). TLC chromatogram of ethyl acetate fraction of Quercus glauca leaf extracts revealed 6 bands $(QG1{\sim}QG6)$, Among them, isoquercitrin (QG3), hyperin (QG4), and rutin (QG6) were identified. The inhibitory effect of aglycone fraction on tyrosinase $(IC_{50},\;73.5{\mu}g/mL)$ and elastase $(IC_{50},\;16.2{\mu}g/mL)$ was high. These results indicate that extract / fractions of Quercus glauca can function as antioxidants in biological systems, particularly skin exposed to UV radiation by scavenging $^1O_2$ and other ROS, and protect cellular membranes against ROS. And component analysis of Quercus glauca leaf extract and inhibitory activity on tyeisinase and elastase of the aglycone fraction could be applicable to new functional cosmetics.

Polarization-sensitive Optical Coherence Tomography Imaging of Pleural Reaction Caused by Talc in an ex vivo Rabbit Model (생체 외 토끼 모델에서의 탈크에 의해 유발되는 흉막 반응의 편광 민감 광 결맞음 단층촬영 이미징)

  • Park, Jung-Eun;Xin, Zhou;Oak, Chulho;Kim, Sungwon;Lee, Haeyoung;Park, Eun-Kee;Jung, Minjung;Kwon, Daa Young;Tang, Shuo;Ahn, Yeh-Chan
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • The chest wall, an organ directly affected by environmental particles through respiration, consists of ribs, a pleural layer and intercostal muscles. To diagnose early and treat disease in this body part, it is important to visualize the details of the chest wall, but the structure of the pleural layer cannot be seen by chest computed tomography or ultrasound. On the other hand, optical coherence tomography (OCT), with a high spatial resolution, is suited to observe pleural-layer response to talc, one of the fine materials. However, intensity-based OCT is weak in providing information to distinguish the detailed structure of the chest wall, and cannot distinguish the reaction of the pleural layer from the change in the muscle by the talc. Polarization-sensitive OCT (PS-OCT) takes advantage of the fact that specific tissues like muscle, which have optical birefringence, change the backscattered light's polarization state. Moreover, the birefringence of muscle associated with the arrangement of myofilaments indicates the muscle's condition, by measuring retardation change. The PS-OCT image is interpreted from three major perspectives for talc-exposure chest-wall imaging: a thickened pleural layer, a separation between pleural layer and muscle, and a phase-retardation measurement around lesions. In this paper, a rabbit chest wall after talc pleurodesis is investigated by PS-OCT. The PS-OCT images visualize the pleural layer and muscle, respectively, and this system shows different birefringence of normal and damaged lesions. Also, an analyisis based on phase-retardation slope supports results from the PS-OCT image and histology.

Plant Growth Promoting Effect and Antifungal Activity of Bacillus subtilis S37-2 (Bacillus subtilis S37-2 균주의 항진균활성 및 식물생육촉진 효과)

  • Kwon, Jang-Sik;Weon, Hang-Yeon;Suh, Jang-Sun;Kim, Wan-Gyu;Jang, Kab-Yeul;Noh, Hyung-Jun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.6
    • /
    • pp.447-453
    • /
    • 2007
  • With a broad objective for the development of microbial based fertilizers, a total of 373 strains were isolated from rhizoplane and rhizosphere of pepper, tomato, lettuce, pasture, and grass. The efficacy of the isolates to augument overall plant growth was evaluated. After screening for their plant growth promotion and antagonistic properties in vitro efficient strains were further selected. The most efficient strains was characterized by 16S rRNA gene sequences and biochemical techniques and was designated as Bacillus subtilis S37-2. The strains facilitated plant growth and inhibited the plant phathogenic fungi such as Fusarium oxysporum (KACC 40037, Rhizoctonia solani (KACC 40140), and Sclerotinia sclerotiorum (KACC 40457). Pot based bioassay using lettuce as test plant was conducted by inoculating suspension ($10^5$ to $10^8cells\;mL^{-1}$) of B. subtilis S37-2 to the rhizosphere of lettuce cultivated in soil pots. Compared with non-inoculated pots, marked increase in leaf (42.3%) and root mass (48.7%) was observed in the inoculation group where the 50ml of cell mixture ($8.7{\times}10^8cells\;ml^{-1}$) was applied to the rhizosphere of letuce either once or twice. Antagonistic effects of B. subtilis S37-2 strain on S. sclerotiorum (KACC 40457) were tested. All the tested lettuce plants perished after 9 days in treatment containing only S. sclerotiorum, but only 17% of lettuce was perished in the inoculation plot. B. subtilis grew well in the TSB culture medium. The isolates grew better in yeast extracts than peptone and tryptone as nitrogen source. The growth rate was 2~4 times greater at $37^{\circ}C$ as compared with $30^{\circ}C$ incubation temperature. B. subitlis S37-2 produced $0.1{\mu}g\;ml^{-1}$ of IAA (indole 3-acetic acid) in the TSB medium containing L-tryptophan($20mg\;L^{-1}$) in 24 hours.

Effects of Low Air Temperature and Light Intensity on Yield and Quality of Tomato at the Early Growth Stage (정식 초기의 저온·저일조가 토마토 수량·품질에 미치는 영향)

  • Wi, Seung Hwan;Yeo, Kyung-Hwan;Choi, Hak Soon;Yu, Inho;Lee, Jin Hyong;Lee, Hee Ju
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.448-454
    • /
    • 2021
  • This study was conducted to the effect of low air temperature and light intensity conditions on yield and quality of tomato at the early stage of growth in Korea. Inplastic greenhouses, low temperature and low temperature with shade treatments were performed from 17 to 42 days after plant. Tomato growing degree days were decreased 5.5% due to cold treatment during the treatment period. Light intensity decreased 74.7% of growing degree days due to shade. After commencing treatments, the plant growth decreased by low temperature and low radiation except for height. Analysis of the yield showed that the first harvest date was the same, but the yield of the control was 3.3 times higher than low temperature with shade treatment. The cumulative yields at 87 days after transplanting were 1734, 1131, and 854 g per plant for control, low temperature, and low temperature with shade, respectively. The sugar and acidity of tomatoes did not differ between treatment and harvesting season. To investigate the photosynthetic characteristics according to the treatment, the carbon dioxide reaction curve was analyzed using the biochemical model of the photosynthetic rate. The results showed that the maximum photosynthetic rate, J (electric transportation rate), TPU (triose phosphate utilization), and Rd (dark respiration rate) did not show any difference with temperature, but were reduced by shading. Vcmax (maximum carboxylation rate) was decreased depending on the low temperature and the shade. Results indicated that low temperature and light intensity at the early growth stage can be inhibited the growth in the early stage but this phenomenon might be recovered afterward. The yield was reduced by low temperature and low intensity and there was no difference in quality.

3D Histology Using the Synchrotron Radiation Propagation Phase Contrast Cryo-microCT (방사광 전파위상대조 동결미세단층촬영법을 활용한 3차원 조직학)

  • Kim, Ju-Heon;Han, Sung-Mi;Song, Hyun-Ouk;Seo, Youn-Kyung;Moon, Young-Suk;Kim, Hong-Tae
    • Anatomy & Biological Anthropology
    • /
    • v.31 no.4
    • /
    • pp.133-142
    • /
    • 2018
  • 3D histology is a imaging system for the 3D structural information of cells or tissues. The synchrotron radiation propagation phase contrast micro-CT has been used in 3D imaging methods. However, the simple phase contrast micro-CT did not give sufficient micro-structural information when the specimen contains soft elements, as is the case with many biomedical tissue samples. The purpose of this study is to develop a new technique to enhance the phase contrast effect for soft tissue imaging. Experiments were performed at the imaging beam lines of Pohang Accelerator Laboratory (PAL). The biomedical tissue samples under frozen state was mounted on a computer-controlled precision stage and rotated in $0.18^{\circ}$ increments through $180^{\circ}$. An X-ray shadow of a specimen was converted into a visual image on the surface of a CdWO4 scintillator that was magnified using a microscopic objective lens(X5 or X20) before being captured with a digital CCD camera. 3-dimensional volume images of the specimen were obtained by applying a filtered back-projection algorithm to the projection images using a software package OCTOPUS. Surface reconstruction and volume segmentation and rendering were performed were performed using Amira software. In this study, We found that synchrotron phase contrast imaging of frozen tissue samples has higher contrast power for soft tissue than that of non-frozen samples. In conclusion, synchrotron radiation propagation phase contrast cryo-microCT imaging offers a promising tool for non-destructive high resolution 3D histology.