기존 네트워크 구조의 한계를 극복하기 위해 등장한 CCN은 주소(IP Adress) 기반 네트워크 방식을 콘텐츠(Contents) 기반 네트워크 방식으로 변화시킴으로써 효율적인 네트워킹을 가능하게 한다. 이때 콘텐츠들은 상위 서버가 아닌 각 노드(라우터)에 저장되는데, 저장 용량의 한계를 고려했을 때 캐시 정책을 통해 어떤 콘텐츠들을 저장하고 방출할지를 결정하는 것이 매우 중요하며, 현재까지 연구되었던 여러 캐시 정책들이 있다. 본 논문에서는 기존의 캐시 정책들 중 생성자 인기도 기반과 거리 기반, 두 가지 정책을 서로 다른 비율로 혼합하여 실험하였으며, 두 정책을 동일한 비율로 혼합했을 때 기존 정책 대비 가장 효율적인 것을 입증하였다.
최근, 이진 특징 기술자를 생성하는 방법에 대한 연구가 많이 진행되고 있다. 이진 특징 기술자의 정합은 비트 연산에 기반한 해밍거리를 이용하므로 실수 연산에 기반한 유클리디안 거리를 이용하는 기존의 일반적인 특징 기술자의 정합보다 훨씬 효율적이기 때문이다. 그러나, 특징 수의 증가는 정합 속도를 선형적으로 감소시키는 원인이 되기 때문에, 객체 추적과 같은 실시간 처리가 중요한 응용 분야에서는 이진 특징 기술자의 정합 속도를 더욱 향상시킬 수 있는 방법에 대한 요구가 증가해 왔다. 이에 본 논문에서는 고차원의 이진 특징 기술자를 여러 저차원의 이진 특징 기술자로 나누어 부분 해밍거리를 계산하고 순차적으로 분석함으로써, 정합 속도는 크게 개선하면서도 정확도는 유지할 수 있는 방법을 제안한다. 제안된 방법의 효율성을 분석하기 위해 기존의 정합 방법들과의 비교 실험을 수행한다. 아울러, 제안된 고속화 방법의 성능을 극대화하기 위한 이진 특징 기술자 생성 방법에 대해서도 논의한다. 몇가지 생성 방법에 대한 성능을 분석함으로써, 가장 효과적인 방법을 모색한다.
지능형 학습 시스템은 학습자의 학습 과정에서 수집된 데이터를 분석하여 학습자에게 맞는 전략을 세우고 적합한 서비스를 제공하는 시스템이다. 학습자에게 적합한 서비스를 위해서는 학습자 모델링 작업이 우선시 되며, 이 모델 생성을 위해서 학습자의 학습 과정에서 발생한 데이터를 수집하고 분석하게 된다. 하지만, 수집된 데이터가 학습자의 일관되지 못한 행위나 비예측 학습 성향을 포함하고 있다면, 생성된 모델을 신뢰하기 어렵다. 본 논문에서는 학습자에게서 수집된 데이터를 거리기반 이상치 선별 방법인 k-NN을 이용하여 이상치를 선별한다. 실험에서는 홈 인테리어 컨텐츠 기반에 학습자의 학습 행위에 대한 학습 성향을 진단하기 위한 DOLLS-HI를 이용하여, 수집된 학습자의 데이터에서 이상치를 분류하고 학습 성향 진단을 위한 모델을 생성하였다. 생성된 모델은 이상치 분류전과 비교하여 신뢰가 향상된 것을 확인하였다.
활자유전학(typogenetics)은 인공생명(artificial life) 연구에 사용되는 형식 시스템으로서, 자가복제자와 하이퍼사이클의 출현에 관한 연구에 효과적인 모델이다. 본 연구에서는 하이퍼사이클에 추가될 복제자의 차이점과 유사점을 측정하기 위하여 편집거리(edit distance)를 사용하여, 기존의 연구에서 생성된 하이퍼사이클 보다 더 큰 크기의 다양한 하이퍼사이클들을 생성하였다.
본 논문에서는 3차원 객체의 전체적인 기하학적 특성을 3차원 형태 기술자로 추출하는 방법을 제안한다. 제안하는 기술자는 기존의 방법에서 문제가 된 부분적 자세변화에 대한 민감성 부분을 해결한다. 3차원 객체의 평면상의 모든 점들을 대상으로 형태 함수를 이용하여 형태 분포(Shape Distribution)를 생성한다. 이때 평면상의 두 정의 거리를 측정하는 기존의 D2 형태 함수를 최단경로를 사용하여 거리를 측정하는 방법으로 변형해 3차원 객체의 부분적 자세 변화에 강건하도록 하였다. 기존의 형태 분포와 비교하여 성능 평가한 결과 관절 객체에 대해서는 약 $ 51\%$, 전체에 대해서는 약 $24\%$의 성능 향상을 보였다.
최근 딥 러닝을 이용한 방법들이 이미지 분류에서 뛰어난 성능을 보임에 따라, 복잡한 특징을 담고 있는 얼굴 이미지에 대해 이를 적용하려는 시도가 늘어나고 있다. 특히, 이미지로부터 주요한 특징들을 추출하여 간결하게 이미지를 대표할 수 있는 이미지 기술자 (Image descriptor)를 딥 러닝을 통해 생성하는 연구가 인기를 끌고 있다. 이는 딥 러닝 끝 단에 있는 Fully-connected layer 의 출력으로 얻을 수 있으며 이미지의 의미론적 상관관계를 이용하여 학습된다. 구체적으로, 이미지 기술자는 실수형 벡터 데이터로서, 한 장의 이미지를 수치화 하여 비슷한 이미지 사이에는 벡터 거리가 가깝게, 서로 다른 이미지 사이에는 벡터 거리가 멀게 구성된다. 본 연구에서는 미리 학습된 인공 신경망을 통과시켜 얻은 얼굴 이미지 기술자를 활용하여 멤버 분류를 위한 두 개의 인공 신경망을 학습하는 것을 목표로 한다. 제안된 방법을 검증하기 위해 얼굴 인식에 널리 사용되는 벤치 마크 데이터셋을 활용하였고, 그 결과 제안된 방법이 높은 정확도로 멤버를 분류할 수 있다는 것을 확인하였다.
미디어와 기술 발달의 따른 매우 원본과 같은 복제 영상인 유사-복제 영상들이 원저자의 동의 없이 사용자간의 교환이 무방비로 유동되고 있다. 이러한 문제점들을 해결하기 위하여, 본 논문에서는 새로운 영상 식별자를 제안한다. 제안된 영상 식별자는 특징점 기반이며, 그것의 주변 밝기 정보의 고유값 분해과정을 거쳐서 지역 기술자를 생성한다. 이 생성된 지역 기술자들을 원본 데이터베이스와 빠르게 검색하여 주어진 질의 영상과 관련된 원본을 찾는 시스템이다. 실험에서는 총 13 종류의 영상을 왜곡을 시행하였으며, 거리의 따른 임계값은 false-positive alarm 을 시행하여 결정하였다. 실험결과 매우 높은 정확률을 가지며, 영상으로부터 영상 식별자 추출 및 데이터에이스 검색속도 또한 매우 우수한 성능을 가진다.
본 논문에서는 증강 현실 환경에서 실시간 마커리스 트래킹을 수행하기 위한 특징 서술자 데이터베이스 생성 및 검색 방법을 제안한다. 먼저, 특징 서술자를 효율적으로 검색하기 위하여 특징 서술자의 형태를 기준으로 정수 부호화 하여 총 4 단계의 인덱스 데이터베이스를 구성한다. 특정 특징 서술자의 검색은 데이터베이스에서 각 단계별로 유사성 있는 후보 특징 서술자의 인덱스를 탐색하고 입력된 특징 서술자와 탐색된 모든 후보 특징 서술자들의 유클리드 거리 값 비교를 통해 이루어진다. 본 연구에서 제안한 검색방법은 형태를 기반으로 유사하지 않은 특징 서술자들을 검색 대상에서 제외하여 검색의 효율을 높였다. 제안된 방법은 기존 KD-Tree 방법에 비해서 특징 서술자당 약 16ms의 검색 속도 개선이 있었음을 확인할 수 있었다.
기존의 이동로봇 시스템은 완전한 자율주행이 주된 목표였으며 이때 영상정보는 단지 모니터링을 하는 보조적인 수단으로 사용되었다. 이에 따라 이동로봇의 자체 기능이 점차 고도화되는 방향으로 연구가 진행되었고, 제작비 또한 함께 상승하게 되었다. 그러나 구동만이 목적인 저렴한 이동로봇 시스템을 조작자가 원격 제어하는 것 또한 중요한 분야 중 하나이다. 이때 원격제어에 사용되는 신호로는 카메라에 의한 영상정보와 초음파 센서 등에 의한 거리정보를 주로 사용하게 된다. 그러나 영상정보는 3차원의 입체적 정보를 제공하는 데에는 부적절하기 때문에 초음파 센서를 이용한 거리정보가 매우 유용하게 된다. 본 논문에서는 초음파 센서의 정보를 이용한 원격제어용 힘 반향 조이스틱을 개발하였다. 힘 반향 알고리즘은 하나의 식으로 표현하기 곤란하므로 전문가 시스템의 구현이 매우 필요한 분야이다. 따라서 퍼지 논리를 사용하여 생성한 힘 반향 알고리즘을 이동로봇 원격제어에 사용함으로써 조작자가 이동로봇 주변환경을 쉽게 인식하여 이동로봇을 안전하게 주행할 수 있도록 하였다.
본 논문에서는 이중시점 스테레오 이미지와 그에 상응하는 깊이맵을 생성하기 위해 서로 다른 초점거리를 가지고 있는 두 카메라를 결합한 이중시점 스테레오 카메라 시스템을 제안한다. 제안한 이중초점 스테레오 카메라 시스템을 이용해 깊이맵을 생성하기 위해서는 먼저 서로 다른 초점을 가진 두 카메라에 대한 카메라 정보를 추출하기 위한 카메라 보정(Camera Calibration)을 수행한다. 카메라 파라미터를 이용해 깊이맵 생성을 위한 공통 이미지 평면을 생성하고 스테레오 이미지 정렬화(Image Rectification)를 수행한다. 마지막으로 정렬화된 스테레오 이미지를 이용하여 깊이맵을 생성하였다. 본 논문에서는 깊이맵을 생성하기 위해서 SGM(Semi-global Matching) 알고리즘을 사용하였다. 제안한 이중초점 스테레오 카메라 시스템은 서로 다른 초점 카메라들이 수행해야 하는 기능을 수행함과 동시에 두 카메라를 이용한 스테레오 정합(Stereo Matching)을 통해서 현재 주행 중인 환경에서의 차량, 보행자, 장애물과의 거리 정보까지 생성할 수 있어서 보다 안전한 자율주행 차량 설계를 가능하게 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.