• 제목/요약/키워드: 생물활성탄

검색결과 80건 처리시간 0.025초

활성탄과 생물여과 공정에서의 Chloral hydrate 제거 특성 (Removal Characteristics of Chloral Hydrate by Activated Carbons and Biofiltration)

  • 배상대;손희종;정철우
    • 대한환경공학회지
    • /
    • 제30권2호
    • /
    • pp.218-224
    • /
    • 2008
  • 본 연구에서는 석탄계, 야자계, 목탄계 활성탄과 흡착능이 없는 안트라사이트를 이용하여 클로랄하이드레이트에 대한 흡착 및 생물분해 특성을 평가하였다. 활성탄 공정에서 클로랄하이드레이트의 제거기작은 운전초기에는 흡착이 높은 비중을 차지하나 부착미생물의 활성이 증진되면서 부착미생물에 의한 생분해와 흡착에 의해 제거되었으며, 클로랄하이드레이트는 생분해능이 큰 물질들로 조사되었다. 입상활성탄 재질별 클로랄하이드레이트의 제거 특성은 석탄계와 야자계 활성탄에서 제거율이 높았고, 목탄계는 상대적으로 낮은 제거능을 보였으며, 안트라사이트 biofilter에서 가장 낮은 제거능을 보였다. 활성탄 재질별 부착 미생물의 생체량과 활성도는 석탄계가 가장 높았고, 야자계, 목탄계, 안트라사이트 순으로 나타났으며, 수온 변화에 따른 클로랄하이드레이트의 제거 특성은 수온이 10$^{\circ}C$ 이하로 저하될 경우 부착 bacteria의 생체량과 활성도 감소로 제거율이 감소하였다. 안트라사이트를 이용한 생물여과 공정은 수온의 변화에 아주 민감하게 변하는 양상을 나타내었으며, 이는 부착 bacteria에 의한 직접적인 생물분해가 주 제거 메카니즘이기 때문인 것으로 나타났다. 클로랄하이드레이트의 제거시 유입농도가 높은 경우에는 수온의 영향이 매우 중요하며, 흡착능이 소진된 활성탄이나 흡착능이 없는 여재를 사용한 생물여과 공정에서는 수온이 낮은 동절기에는 클로랄하이드레이트의 유출 가능성이 있었다.

생물담체 활용 생물접종에 의한 원유로 오염된 해양토양의 정화 (Clean-up of the Crude Oil Contaminated Marine Sediments Through Biocarrier-Mediated Bioaugmentation)

  • ;배환진;권성현;김병혁;박득자;김희식;고성철
    • 미생물학회지
    • /
    • 제45권4호
    • /
    • pp.354-361
    • /
    • 2009
  • 본 연구의 목표는 생물담체(biocarrier)에 의한 생물접종기술(bioaugmentation)을 개발하여 원유로 오염된 해양저질의 정화에 활용하고자 하는 것이다. 몇 군데의 원유로 오염된 해안으로부터 수 가지의 분해미생물군집을 농화배양하여 평가한 결과 기능적으로 상이한 2가지의 미생물군집을 분리하였다. 이들 미생물군집을 혼합 배양한 경우 Alcanivorax sp.가 우점종을 이루는 것으로 나타났으며, 이 군집과 대나무활성탄 등을 이용하여 미생물제제(MA-2)를 제조하여 사질의 원유오염 해안토양에 처리할 경우 5주 후 산소발생제의 존재하에 90% 이상의 TPH 분해력을 나타내었다. 또한 점질의 토양도 미생물제제(MA-1)를 처리할 경우 5주 후 71% 정도의 분해율을 나타냈다. 이는 분리된 토착미생물군집을 활용하여 오염토양의 처리에 효과적으로 활용할 수 있음을 의미한다. 한편 계면활성제의 고농도의 처리는 분해미생물의 작용을 억제하므로 적절한 농도의 확인이 필요하며 점토질의 토양의 정화를 위해서는 적절한 통기를 시키는 방법(산소발생제 투여, 기계적 aeration 등)의 활용이 요구된다.

혐기성 유동층 반응기에서 지지체의 물리.화학적 특성과 메탄 발효 성능 사이의 관계 (Relationship among Physical & Chemical Properties of Supports and Performance of Methane Fermentation in Anaerobic Fluidized-Bed Reactor)

  • 조무환;남영섭정재학김정목
    • KSBB Journal
    • /
    • 제8권5호
    • /
    • pp.431-437
    • /
    • 1993
  • 적은 에너지로 적절한 유동충을 유지하기 위한 가 장 좋은 지지체는 bulk 빛 wet밀도가 가장 작은 활 성탄이며 최소및최적유동화속도가각각0.03cm/sec, 0.25cm/sec로 나타났다. 메탄 발효에 대한 유 기물 부하의 증가에 따라 모든 지지체의 CODe, 제 거율은 감소하였으나, 활성탄은 본 실험범위의 유기 물 부하에서 90% 이상의 제거율을 보였다. 이는 매 우 큰 비표면적을 가지는 활성탄에 많은 미생물이 흡착된 때문으로 사료된다. 유기물 부하 $16gCOD_{cr}/\ell.day$16gCODcr/day에서 흡착된 마생물의 양은 157mg/g이다. 천연 제올라이트와 Roast Celite를 비교하면 바표 면적만에 비례하여 미생물의 양이 증가하지는 않음 을 알 수 았으며, 동엘한 비표면적을 가지는 Roast Celite와 부석을 비교하면, 유기물 제거능이 Roast Celite가 우수한데 이로부터 표면의 거칠기가 상대적으로 크고 표면전하가 양전하를 띠는 것이 마생물 흡착에 중요한 것으로 사료된다. 혐기성 유동층 반 응기에 이용할 지지체는 유체의 shear stress를 감소 시켜서 미생물 흡착을 증대시키기 위하여 될 수 있으면 작은 wet밀도와 작은 유동화 속도를 가져야 한다고 사료된다.

  • PDF

입상활성탄에 의한 합성폐수의 용존유기물질의 새로운 흡착등온 모델 및 운동학적 흡착 연구 (Study of new adsorption isotherm model and kinetics of dissolved organic carbon in synthetic wastewater by granular activated carbon)

  • 김성현;신성훈;김진혁;우달식;이호선
    • 한국산학기술학회논문지
    • /
    • 제15권4호
    • /
    • pp.2029-2035
    • /
    • 2014
  • 본 논문은 입상활성탄에 의해서 합성폐수에서의 용존유기탄소의 흡착평형과 회분식 실험을 통해 흡착성질을 파악하고자 하였다. 흡착평형의 새로운 모델식을 제안하였고 이 식을 바탕으로 회분식 실험데이터를 모사하였다. 합성폐수의 유기성분은 Beef extract, Peptone, Humic acid, Tannic acid, Sodium lignin sulfonate, Sodium lauryle sulfate, Arabic gum powder, Arabic acid (polysaccharide), $(NH_4)_2SO_4$, $K_2HPO_4$, $NH_4HCO_3$, $MgSO_4{\cdot}7H_2O$ 등으로 구성되었다. 농도가 낮은 영역 (0~2.5 mg/L)에서는 선형적인 흡착평형을 보여주었고, 농도가 높은 영역 (2.5~6mgl/L)에서는 우호적인 흡착평형을 보여주었다. 사용되어진 생물학적 처리방법에서 나오는 유출수의 합성폐수는 알려진 양으로 준비되어졌다. 흡착평형 모델링은 Freundlich, Langmuir, Sips 및 하이브리드 식을 이용하여 모사하였다. 특히, 선형과 Sips를 이용한 하이브리드 흡착평형식은 낮은 농도와 높은 농도 역에서 매우 좋은 흡착평형식이었다. 용수 및 폐수처리에 활성탄 흡착에 있어서, 선형식과 Sips식을 합친 새로운 하이브리드 식은 새로운 흡착평형식이 될 수 있었다. 하이브리드 흡착평형식 (선형+Sips)을 이용하여 LDFA 운동학적식을 통하여 다양한 흡착제 양에 따른 회분식 반응조에서의 실험데이터를 잘 모사할 수 있었다.

FISH법을 이용한 정수처리장 내 생물활성탄 공정의 세균군집 구조 분석 (Analysis of Bacterial Community Structure of Biological Activated Carbon Process in Drinking Water Treatment Plant Using FISH)

  • 손형식;김미아;정성윤;김영훈;손희종;박근태;김민주;유은연;이상준
    • 한국환경과학회지
    • /
    • 제17권5호
    • /
    • pp.555-564
    • /
    • 2008
  • The bacterial community structure in biological activated carbon (BAC) process in drinking water treatment plant was investigated by Fluorescent in situ Hybridization (FISH) with rRNA-targeted oligonucleotide probe. Samples were collected at different three points in BAC process every month for one year. They were hybridized with a probe specific for the alpha, beta, gamma subclass of the class Proteobacteria, Cytophaga-Flavobacteria group and Gram-positive high G+C content (HGC) group. Total numbers of bacteria in BAC process counted by 4',6-diamidino-2-phenylindole (DAPI) staining were $5.4{\times}10^{10}$ (top), $4.0{\times}10^{10}$ (middle) and $2.8{\times}10^{10}$ cells/ml (bottom). The number of the culturable bacteria was from $1.0{\times}10^7$ to $3.6{\times}10^7$ cells/ml and the culturability was about 0.05%. The faction of bacteria detectable by FISH with the probe EUB338 was about 83% of DAPI counts. Gamma and alpha subclass of the class Proteobacteria were predominant in BAC process and their ratios were over 20% respectively. In top and middle, alpha, beta and gamma subclass of the class Proteobacteria competed with each other and their percentages was changed according to the season. In bottom, gamma subclass of the class Proteobacteria was predominant all through the year. It could be successfully observed the seasonal distribution of bacterial community in biological activated carbon process using FISH.

생물활성탄을 이용한 Linear Alkyl Sulfate함유 원수에서의 질산화에 관한 연구 (A Study on Nitrification of Raw Waters Containing Linear Alkyl Sulfate in Biological Activated Carbon)

  • 박성순;장지수;유명진
    • 상하수도학회지
    • /
    • 제9권3호
    • /
    • pp.116-126
    • /
    • 1995
  • The purpose of this study was to investigate the removal of ammonium nitrogen by biological nitrification in raw water containing LAS using BAC. At batch teats, LAS removal by ozone followed the first order reaction, and the rate constants(k) by ozone dose 1, 3mg/min.L were $0.040min^{-1}$, $0.062min^{-1}$ respectively. Therefore, the more ozone was dosed, the higher LAS was removed The reaction between ozone and ammonium nitrogen also followed the first order, and rate constants(k) at pH7,8 and 9 were $8.9{\times}10^{-4}min-1$, $3.8{\times}10^{-3}min^{-1}$, and $2.9{\times}10^{-2}min^{-1}$ respectively at ozone dose of 3mg/min.L . Therefore, ammonium nitrogen was little removed by ozone under neutral pH of 7. The continuous flow apparatus had four sets composed of a ozone contacter and a GAC column. Through continuous filtration test for 50days, the following conclusions were derived; (1) LAS was removed 23%, 30% respectively by ozone dose 1, 3mg/L, and was not detected in all column effluents during the period of experiment. Therefore, it appeared that adsorption capacities of each column still remained. (2) Ammonium nitrogen concentration after ozone contact varied little in raw Water because pH of raw water was from 6 to 7, and was transfered to nitrite and nitrate within GAC columns as the result of staged nitrification. After 30days, nitrite was not detected in all column effluents due to biological equilbrium between nitro semonas and nitrobacter Average removals of ammonium nitrogen in each column after the lapse of 30days were the following; ${\cdot}$ column A (ozone dose 3mg/L, EBCT 9.5min): about 100% ${\cdot}$ column B (ozone dose 1mg/L, EBCT 9.5min): 91% ${\cdot}$ column C (ozone dose 3mg/L, EBCT 14.2min): about 100% ${\cdot}$ column D (ozone dose 0mg/L, EBCT 9.5min): 53% Though column A and C reached nitrification of about 100%, column C (longer EBCT than column A) was more stable than column A. (3) After backwash, nitrification reached steady state within 5 to 8 hours. Therefore, nitrification was not greatly affected by backwash. (4) According to the nitrification capacity in depth of column A, C, where 100% nitrification occured. LAS was removed within 20cm, while ammonium nitrogen required more depth to be removed by nitrification.

  • PDF

오염된 연안저질의 현장생물정화를 위한 미생물활성촉진제의 용출특성 연구 (Study on the elution of biostimulant for in-situ bioremediation of contaminated coastal sediment)

  • 우정희;송영채;센틸쿠마르
    • 한국항해항만학회지
    • /
    • 제38권3호
    • /
    • pp.239-246
    • /
    • 2014
  • 자생하는 미생물의 활성을 촉진시킴으로써 오염된 연안퇴적물을 현장생물정화하기 위하여 사용하는 미생물활성촉진제의 용출특성에 대한 연구를 수행하였다. 미생물의 생리활성을 촉진하는 황산염, 질산염을 오염되지 않은 연안퇴적물과 혼합하였으며, 혼합물을 볼 형태로 만든 뒤 셀룰로스 아세테이트 및 폴리설펀으로 각각 표면을 코팅하여 볼 형태의 미생물활성촉진제 2종을 제작하였다. 또한, 황산염과 질산염이 용해된 생리활성물질 용액에 입상활성탄을 침지시켜 입자상 미생물활성촉진제를 별도로 준비하였다. 셀룰로스 아세테이트로 코팅한 미생물활성촉진제를 전자현미경으로 관찰한 결과 코팅층 내부는 다소 큰 공극이 불규칙적으로 존재하였으나 코팅층 외부는 촘촘한 벌집모양의 공극들이 분포되어있었다. 폴리설펀으로 코팅한 미생물활성촉진제의 경우는 코팅층의 내부와 외부 모두 공극이 없는 치밀한 구조를 보였다. 셀룰로스 아세테이트로 코팅한 미생물활성촉진제의 생리활성물질 용출율은 폴리설펀으로 코팅한 미생물활성촉진제에 비해 증류수와 해수에서 모두 높았으며, 입자상 미생물활성촉진제로부터의 생리활성물질의 용출율은 폴리설펀으로 코팅한 미생물활성촉진제에 비해 약 9배 이상 높았다. 미생물활성촉진제로부터 생리활성물질들의 용출속도는 정체조건에 비해 난류조건에서 약 3배 이상 빠른 것으로 평가되었으며, 생리활성물질들 중에서 질산염은 황산염에 비해 빠르게 용출되는 특성을 보였다.

활성탄과 생물여과 공정에서의 유기질소계 염소 소독부산물 제거 특성 (Removal Characteristics of Nitrogenous Organic Chlorination Disinfection By-Products by Activated Carbons and Biofiltration)

  • 서인숙;손희종;최영익;안욱성;박청길
    • 대한환경공학회지
    • /
    • 제29권2호
    • /
    • pp.184-191
    • /
    • 2007
  • 활성탄 공정에서 chloropicrin, DCAN, DBAN 및 TCAN과 같은 질소계 염소 소독부산물의 제거기작은 운전초기에는 흡착이 높은 비중을 차지하나 부착미생물의 활성이 중진되면서 부착미생물에 의한 생분해와 흡착에 의해 제거되었으며, 이들 물질들은 생분해능이 큰 물질들로 조사되었다. 입상활성탄 재질별 chloropicrin, DCAN, TCAN 및 DBAN의 제거 특성은 석탄계와 야자계 재질의 활성탄에서 제거율이 높았고, 목탄계는 상대적으로 낮은 제거능을 보였으며, 안트라사이트 biofilter에서 가장 낮은 제거능을 보였다. 활성탄 재질별 부착 미생물의 생체량과 활성도는 석탄계가 가장 높았고, 야자계, 목탄계, 안트라사이트 순으로 나타났으며, 수온 변화에 따른 chloropicrin, DCAN, TCAN 및 DBAN의 제거 특성은 수온이 $10^{\circ}C$ 이하로 저하될 경우 부착 bacteria의 생체량과 활성도 감소로 제거율이 감소하였다. 안트라사이트를 이용한 생물여과 공정은 수온의 변화에 아주 민감하게 변하는 양상을 나타내었으며, 이는 부착 bacteria에 의한 직접적인 생물분해가 주 제거 메카니즘이기 때문인 것으로 나타났다. Chloropicrin, DCAN, TCAN 및 UBAN과 같은 질소계 염소소독부산물들의 유입농도가 높은 경우 이들의 제거시에는 수온의 영향이 매우 중요하며, 흡착능이 소진된 활성탄이나 흡착능이 없는 여재를 사용한 생물여과 공정에서는 수온이 낮은 동절기에는 이들의 유출 가능성이 있었다.

활성탄 공정에서의 염소 소독부산물 제거특성 (Removal Characteristics of Chlorination Disinfection By-Products by Activated Carbons)

  • 손희종;노재순;김상구;배석문;강임석
    • 대한환경공학회지
    • /
    • 제27권7호
    • /
    • pp.762-770
    • /
    • 2005
  • 활성탄 재질별 THM 흡착능은 야자계 활성탄이 가장 우수하였고, 다음으로 석탄계, 목탄계 활성탄 순으로 평가되었으며, 야자계 활성탄의 최대 흡착량(X/M)이 석탄계와 목탄계 활성탄에 비해 각각 $1.1{\sim}1.5$배 및 $14.1{\sim}31.4$배 정도 높은 것으로 조사되었다. 또한, 활성탄 사용율(CUR)의 경우는 chloroform 흡착 제거시 야자계 활성탄은 1일 9.4 g의 활성탄을 사용하여 제어할 수 있는 반면, 석탄계나 목탄계 활성탄의 경우는 11.2 g 및 38 g의 활성탄을 사용하여야만 제어가 가능한 것으로 나타났다. THM 구성종별 활성탄에 대한 흡착특성을 조사한 결과 chloroform의 k값이 가장 낮은 것으로 조사되어 THM 구성종들 중 활성탄을 이용한 흡착제거가 가장 어려운 것으로 조사되었으며, 다음으로 BDCM, CDBM, bromoform 순으로 나타났다. bromoform은 chloroform에 비해 k값이 활성탄 재질별로 $5{\sim}12$배 정도 큰 것으로 나타났다. Biofilter에서의 THM 구성종들에 대한 생분해 특성을 평가한 결과, 물질별 평균 생분해율이 chloroform의 경우 7%, BDCM 5%, CDBM 4%, bromoform 3%로 나타나 생물분해가 어려운 것으로 조사되었다. HAA5 구성종들에 대한 활성탄 흡착 및 biofilter를 이용한 생분해 특성 평가 결과는 운전초기에는 흡착 제거되었으며, biofilter에서의 생물분해능은 TCAA를 제외한 나머지 4종은 bed volume 2000 부근부터는 생물분해에 의해 거의 100% 제거되는 것으로 나타났으나, TCAA는 bed volume 4000 이후부터 생물분해에 의해 90% 이상 제거되기 시작하여 bed volumed의 증가와 함께 제거율도 상승하였다.

O3/BAC 공정에서 Peroxone 공정 적용에 따른 잔류 과산화수소 제거 특성 (Removal Characteristics of Residual Hydrogen Peroxide (H2O2) according to Application of Peroxone Process in O3/BAC Process)

  • 염훈식;손희종;서창동;김상구;류동춘
    • 대한환경공학회지
    • /
    • 제35권12호
    • /
    • pp.889-896
    • /
    • 2013
  • 수중의 미량 유해물질 제거를 위해 AOP 공정에 대한 관심이 증대되고 있다. 낙동강 하류에 위치한 정수장들은 대부분 $O_3/BAC$ 공정을 채택하여 운전 중에 있으며, AOP 공정의 일종인 peroxone 공정의 적용에 많은 관심을 가지고 있다. 본 연구에서는 $O_3/BAC$ 공정을 운전 중인 정수장에서 과산화수소를 투입할 경우에 후단의 BAC 공정에서의 잔류 과산화수소의 제거 특성을 biofiltration 공정과 함께 평가하였다. 유입수의 수온 및 과산화수소 농도변화 실험에서 biofilteration 공정은 낮은 수온에서 유입수 중의 과산화수소 농도가 증가하면 급격히 생물분해능이 저하된 반면, BAC 공정에서는 비교적 안정적인 효율을 유지하였다. 유입수의 수온을 $20^{\circ}C$, 과산화수소 투입농도를 300 mg/L로 고정하여 78시간 동안 연속으로 투입한 실험에서 biofilteration 공정은 EBCT 5~15분의 경우 운전 24~71시간 후에는 유입된 과산화수소가 거의 제거되지 않았으나, BAC 공정에서는 78시간 후의 과산화수소 제거율이 EBCT 5~15분일 때 38%~91%로 나타났다. 또한, 78시간 동안 연속 투입실험 후의 biofilter와 BAC 부착 박테리아들의 생체량과 활성도는 각각 $6.0{\times}10^4CFU/g$$0.54mg{\cdot}C/m^3{\cdot}hr$$0.4{\times}10^8CFU/g$$1.42mg{\cdot}C/m^3{\cdot}hr$로 나타나 운전초기에 비해 biofilter에서는 생체량과 활성도가 각각 99%와 72% 감소하였으며, BAC의 경우는 각각 68%와 53%의 감소율을 나타내었다. BAC 공정에서 생물분해 속도상수($k_{bio}$)와 반감기($t_{1/2}$)를 조사한 결과, 수온 $5^{\circ}C$에서 과산화수소 농도가 10 mg/L에서 300 mg/L로 증가할수록 $k_{bio}$$1.173min^{-1}$에서 $0.183min^{-1}$으로 감소하였고, $t_{1/2}$은 0.591 min에서 3.787 min으로 증가하였다. 수온 $25^{\circ}C$의 경우 $k_{bio}$$t_{1/2}$$1.510min^{-1}$에서 $0.498min^{-1}$ 및 0.459 min에서 1.392 min으로 나타나 수온 $5^{\circ}C$에 비해 수온이 $15^{\circ}C$$25^{\circ}C$로 상승할 경우 $k_{bio}$는 각각 1.1배~2.1배 및 1,3배~4.4배 정도 증가하였다. $O_3/BAC$ 공정을 운전 중인 정수장에서 peroxone 공정의 적용을 위해 과산화수소 투입을 고려할 경우, 후단의 BAC 공정에서 잔류 과산화수소를 효과적으로 제거 가능하였고, 고농도의 과산화수소 유출사고시에는 BAC 공정의 EBCT를 최대한 증가시켜 운전할 경우 수중의 과산화수소 농도를 최대한 저감시킬 수 있을 것으로 판단된다.