• Title/Summary/Keyword: 생물학적 활성

Search Result 1,085, Processing Time 0.022 seconds

Prospects for development of cosmetic industry using natural products in Chungbuk (충북지역의 천연 자원을 활용한 화장품 산업의 발전 전망)

  • Hwang, Hyung seo
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.26-27
    • /
    • 2018
  • With entry into force of the Nagoya Protocol to promote the fair sharing of the benefits of accessing and utilizing genetic resources, much support has been given to research on the development of biomaterials and products using domestic natural resources. Conservation and resource-saving of native species became very important through Nagoya Protocol enactment. The trend of cosmetic industry has been shifing from use synthetic chemicals to natural biomaterials, due to the safety regulations on new materials, ban on animal experiments, and expansion of cosmeceuticals range. In addition, functional cosmetic range has been expanded from whitening, wrinkle improvement, and ultraviolet shielding, to hair loss, hair loss alleviation, acne relaxation, and moisturizing of atopic skin, thus causing the activation of research about field of efficacy evaluation on natural biomaterials and commercialization. Chungbuk province is fostering the bio industry as a key industry for regional economic growth. For this purpose, Osong Biotechnology Complex/Ochang Science Industrial Complex in middle area, Jecheon biovalley in northern region, and Chungju Enterprise city have been established, thus playing a pivotal role in Bio innovative cluster in Korea. In particular, it was established the osong cosmetics clinical research support center to develop the cosmetics industry in chungbuk, thereby supporting clinical trials, efficacy evaluations, overseas certification, and overseas market entry in order to advance into the global market. In addition, oriental plants such as astragalus propinquus, schisandra chinensis, eucommia, alpiniae oxyphyllae fructus and biancaea sappan are being actively studied as global cosmetic ingredients through the promotion of various national research and development projects using natural materials in chungbuk province. The chungbuk natural product industry is expected to grow further throughout cosmetics industry development in the future, as companies and research institutes are actively promoting the secure index of effective material in natural products and effective material commercialization.

  • PDF

Effects of Resveratrol and Resveratryl Triacetate on The Inflammatory Responses of Human Epidermal Keratinocytes Exposed to Airborne Particulate Matter PM10 (대기 미립자 물질 PM10에 노출된 인간 표피 각질형성세포의 염증 반응에 대한 레스베라트롤과 레스베라트릴 트라이아세테이트(RTA)의 영향)

  • Choi, Min A;Seok, Jin Kyung;Lee, Jeong-won;Lee, Shin Young;Kim, Young Mi;Boo, Yong Chool
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.3
    • /
    • pp.249-258
    • /
    • 2018
  • Airborne pollution causes oxidative damage, inflammation, and premature aging of skin. Resveratrol is a polyphenol compound that has various biological activities such as antioxidant, anti-inflammation, and anti-melanogenic activities but it is unstable to heat and light. Resveratryl triacetate (RTA) is a new cosmetic ingredient that is more stable than resveratrol and its skin safety and whitening efficacy have been reported previously. The purpose of this study was to examine the effects of resveratrol and resveratryl triacetate (RTA) on the inflammatory responses of human epidermal keratinocytes (HEKs) exposed to airborne particulate matters with a diameter of < $10{\mu}m$ (PM10). Cultured HEKs were exposed to PM10 in the absence or presence of resveratrol and RTA. Assays were undertaken to determine cell viability, the production of reactive oxygen species (ROS), and the expression of inflammatory cytokines. PM10 treatment decreased cell viability, and increased the expression of pro-inflammatory cytokines such as tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$), $interleukin-1{\beta}$ ($IL-1{\beta}$), interleukin-6 (IL-6), and interleukin-8 (IL-8). Resveratrol and RTA reduced cell death and ROS production induced by PM10. PM10-induced mRNA expression of the inflammatory cytokines was either attenuated (IL-6), or enhanced ($IL-1{\beta}$), or unaffected ($TNF-{\alpha}$ and IL-8) by resveratrol and RTA. PM10-induced IL-6 protein expression was attenuated by resveratrol and RTA. This study suggests that resveratrol and RTA have activities regulating cell damage and inflammatory responses of the skin exposed to airborne particulate matters.

Expression and Localization of ATF4 Gene on Oxidative Stress in Preimplantation Mouse Embryo (생쥐 착상전 배아에서 산화적 스트레스에 의한 ATF4 유전자의 발현과 존재 부위)

  • Na, Won-Heum;Kang, Han-Seung;Eo, Jin-Won;Gye, Myung-Chan;Kim, Moon-Kyoo
    • Development and Reproduction
    • /
    • v.10 no.2
    • /
    • pp.105-113
    • /
    • 2006
  • Reactive oxygen species(ROS) generated in cellular metabolism have an effect on cell maturation and development. In human reproductive tract, oxidative injury by ROS may induce female infertility. Also, oxidative injury may be responsible for developmental retardation and arrest of mammalian preimplantation embryos. Activating transcription factor 4(ATF4) is a member of the cyclic-AMP response element-binding(CREB) familiy of basic region- leucine zipper(bZip). ATF4 is known to regulate stress response to protect cell from various stress factors and inducer of apoptisis. The purpose of this study was to investigate whether ATF4 is involved in the defensive mechanism in oxidative stress condition during the development of mouse preimplantation embryos. To verify the expression of ATF4 in oxidative stress condition, 2-cell stage embryos were cultured in HTF media containing 0.1mM, 0.5mM or 1mM hydrogen peroxide($H_2O_2$) for 1hr(2-cell), 8hr(4-cell), 17hr(8-cell), 24hr(morula), 48hr(early blastocyst) or 64hr(late blastocyst). The developmental rate decreased in the 0.1mM $H_2O_2$ treated group compared with control group. In embryos treated with 0.5mM and 1mM $H_2O_2$ showed 2-cell block. As a results of the semi-quantitative RT-PCR analysis of SOD1, ATF4 and Bax gene expression, SOD1, ATF4 and Bax genes were increased in 0.1mM, 0.5mM, 1mM $H_2O_2$ treated groups compared with control group. In 2-cell embryos, expression of SOD1, ATF4 and Bax genes were notably increased in 0.1mM, 0.5mM, 1mM $H_2O_2$ treated groups compared with control group. Immunofluorescence analysis showed that ATF4 protein was localized at the cytoplasm of preimplantation embryos. The increase in ATF4 immunoreactivety was observed in the 0.1mM, 0.5mM, 1mM $H_2O_2$ treated groups compared with control group. It suggests that oxidative stress by $H_2O_2$ induces expression of ATF4 and may be involved in protection mechanism in preimplantation embryos from oxidative injury.

  • PDF

Biological Activities of Calcium Polyphosphate (Calcium polyphosphate의 생물학적 활성도에 관한 연구)

  • Seol, Yang-Jo;Lee, Jae-Il;Lee, Yong-Moo;Lim, Yoon-Tak;Kim, Seok-Young;Ku, Young;Rhyu, In-Chul;Hahm, Byung-Do;Han, Soo-Boo;Choi, Sang-Mook;Chung, Chong-Pyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.2
    • /
    • pp.213-231
    • /
    • 2000
  • 이 연구의 목적은 다공성의 CPP 내부에 쥐의 장골의 골수에서 유래된 세포를 접종하고 3차 원적으로 배양하여 CPP가 골 형성을 위한 조직공학의 지지체로 적용가능한가를 연구하는 것과 Calcium PolyPhosphate(CPP)의 돌연변이 유발성을 검사하는 것이다. 무수 ($Ca(H_2PO_4)$)를 condensation하여 무결정의 ($Ca(PO_3)$)를 얻고 이를 용융하고 냉각시킨 후 분쇄하여 Calcium polyphosphate(CPP) powder를 얻었다. 다공성의 CPP는 5% $SiO_2$를 첨가하여 sponge 형태로 $450-550{\mu}m$ 소공의 크기를 가지는 것과(CPP-45ppi) $200-300{\mu}m$의 소공의 크기를 가지는 것(CCP-60ppi) 2가지로 제작하였다. 각각의 CPP matrices는 $5mm{\times}5mm{\times}1mm$의 블록 형태로 만들었다. 체중 100g 내외의 백서에서 장골(femur, tibia)을 채취하여 백서의 장골 골수 세포를 분리하여 배양한 후 24well에 CPP block을 넣고 CPP block 당 $10^5$개의 배양한 세포를 접종하였다. 배양 1, 7, 14, 및 21 일째에 각 well에서 trypsin EDTA를 이용하여 2회 반복하여 cell을 분리하였고, 원심분리한 후 hemacytometer로 측정하였다. 또, 45ppi와 60ppi, 그 리 고 Tissue Culture Polystyrene(control group)에 접종, 배양된 세포들의 염기성 인산분해효소활성도를 배양 7, 14, 및 21 일째에 각각 측정하였다. 각 기간별로 배양된 세포-CPP 혼합체내에서 세포의 부착 및 증식과 형성된 조직의 3차원적 형태를 관찰하기 위하여 주사전자현미경하에서의 관찰하였다. CPP의 돌연변이 유발성 검사 (mutagenicity test)를 위해 hypoxanthine-guanine phosphoribosyl transferase(HPRT) assay를 하였다. NIH3T3 cell line과 CHO-K1 cell line으로 각각 $1000{\mu}g/m{\ell}$, $100{\mu}g/m{\ell}$, $10{\mu}g/m{\ell}$ 그리고 $1{\mu}g/m{\ell}$의 CPP 농도에서 측정하였다. 통계적 분석을 위해서 모든 측정은 각군당 4개체 이상 시험하였고, 각 측정값은 평균값${\pm}$표준편차로 나타내었다. 각 군간의 통계적 유의성 검정을 위해서 Analysis of variance(ANOVA)를 이용하였고 Tukey의 방법으로 사후분석을 실시하였다. 제작된 CPP matrices 소공들이 서로간에 연결이 잘 되어있는 형태였다. 두 가지로 제조된 CPP(45ppi와 60ppi) 모두에서 세포의 부착이 잘 일어났고, 부착된 세포의 분열도 잘 일어났다. 2 가지의 CPP 모두에서 7, 14, 21일째의 세포 수는 1일째에 비해 유의성 있게 증가하였다(P<0.01). 3차원적 구조인 Calcium PolyPhosphate에서 배양한 세포는 24well dish(tissue culture polystyrene)에서 평면적으로 배양한 대조군의 세포에서 보다 염기성 인산분해효소 (Alkaline Phosphatase)를 유의성 있게 높게 나타냈다. 주사전자현미경에서 세포-CPP 혼합체를 관찰한 결과, CPP block에 세포들이 잘부착되어 있었고, 시간이 지남에 따라 세포가 여러 층을 형성하면서 뭉치는 현상을 보였다. 또, HPRT assay 결과 , Calcium PolyPhosphate는 돌연변이 유발성을 보이지 않았다. 이상의 결과로 볼 때 CPP에는 세포부착이 잘 일어나고, 지지체 상에서 세포의 분열도 활발하게 일어나므로 골조직을 위한 조직공학의 우수한 지지체가 될 수 있을 것으로 사료된다.

  • PDF

Chlorophyll Fluorescence and $CO_2$ Fixation Capacity in Leaves of Camellia sinensis, Camellia japonica, and Citrus unshiu (차나무, 동백나무, 귤나무 잎에서 엽록소 형광 및 $CO_2$ 흡수능의 비교 분석)

  • Oh, Soonja;Lee, Jin-Ho;Ko, Kwang-Sup;Koh, Seok Chan
    • Korean Journal of Environmental Biology
    • /
    • v.30 no.2
    • /
    • pp.98-106
    • /
    • 2012
  • The chlorophyll fluorescence and photosynthetic $CO_2$ fixation capacity of leaves from three major crop trees found on Jeju Island, Camellia sinensis L., Camellia japonica L., and Citrus unshiu M., were analyzed. The photosynthetic $CO_2$ fixation rate of C. sinensis was similar to that of C. unshiu, and much higher than that of C. japonica which belongs to the same genus. Stomatal conductance in the three species was high at dawn and low during daytime. The intercellular $CO_2$ concentration of the three species was also high at dawn and decreased at midday. The transpiration rate showed an opposite trend from the intercellular $CO_2$ concentration. The photochemical efficiencies of PSII (Fv/Fm) in C. sinensis were slightly lower at midday compared to the level at dawn and/or dusk. The decline in Fv/Fm of C. sinensis at midday was much smaller than that of C. japonica. These results indicate that C. sinensis is better acclimated to high levels of radiation under natural conditions in late summer, although its PSII reaction center was inhibited by strong radiation. Of the chlorophyll fluorescence parameters in the species, the RC/CS decreased significantly while the ABS/RC, TRo/RC, ETo/RC, and DIo/RC increased significantly at midday in late summer. However, C. unshiu did not show significant changes in these values depending on the time of day. Among the three species, the daily $CO_2$ fixation rate in C. sinensis ($320.1mmol\;m^{-2}d^{-1}$) was the highest, followed by that of C. unshiu ($292.5mmol\;m^{-2}d^{-1}$) and C. japonica ($244.8mmol\;m^{-2}d^{-1}$). Thus, C. sinensis may be a valuable crop tree in terms of the uptake of $CO_2$ under natural field conditions.

Multiple Monoclonal Antibodies Produced in a Single Transgenic Plant (형질전환 식물체에서의 복합 단일 항체 단백질 생산)

  • Ahn, Mi-Hyun;Oh, Eun-Yi;Song, Mi-Ra;Lu, Zhe;Kim, Hyun-Soon;Joung, Hyouk;Ko, Ki-Sung
    • Journal of Life Science
    • /
    • v.19 no.1
    • /
    • pp.123-128
    • /
    • 2009
  • Production of highly valuable immunotherapeutic proteins such as monoclonal antibodies and vaccines using plant biotechnology and genetic engineering has been studied as a popular research field. Plant expression system for mass production of such useful recombinant therapeutic proteins has several advantages over other existing expression systems with economical and safety issues. Immunotherapy of multiple monoclonal antibodies, which can recognize multiple targeting including specific proteins and their glycans highly expressed on the surface of cancer cells, can be an efficient treatment compared to a single targeting immunotherapy using a single antibody. In this study, we have established plant production system to express two different targeting monoclonal antibodies in a single transgenic plant through crossing fertilization between two different transgenic plants expressing anti-colorectal cancer mAbCO17-1A and anti-breast cancer mAbBR55, respectively. The F1 seedlings were obtained cross fertilization between the two transgenic parental plants. The presence, transcription, and protein expression of heavy chain (HC) and light chain (LC) genes of both mAbs in the seedlings were investigated by PCR, RT-PCR, and immunoblot analyses, respectively. Among all the seedlings, some seedlings did not carry or transcribe the HC and LC genes of both mAbs. Thus, the seedlings with presence and transcription of HC and LC genes of both mAbs were selected, and the selected seedlings were confirmed to have relatively stronger density of HC and LC protein bands compared to the transgenic plant expressing only each mAb. These results indicate that the F1 seedling plant with carrying both mAb genes was established. Taken together, plant crossing fertilization can be applied to generate an efficient production system expressing multiple monoclonal antibodies for immunotherapy in a single plant.

Tissue Distribution of HuR Protein in Crohn's Disease and IBD Experimental Model (염증성 장질환 모델 및 크론병 환자에서의 점막상피 HuR 단백질의 변화 분석)

  • Choi, Hye Jin;Park, Jae-Hong;Park, Jiyeon;Kim, Juil;Park, Seong-Hwan;Oh, Chang Gyu;Do, Kee Hun;Song, Bo Gyoung;Lee, Seung Joon;Moon, Yuseok
    • Journal of Life Science
    • /
    • v.24 no.12
    • /
    • pp.1339-1344
    • /
    • 2014
  • Inflammatory bowel disease is an immune disorder associated with chronic mucosal inflammation and severe ulceration in the gastrointestinal tract. Antibodies against proinflammatory cytokines, including TNF${\alpha}$, are currently used as promising therapeutic agents against the disease. Stabilization of the transcript is a crucial post-transcriptional process in the expression of proinflammatory cytokines. In the present study, we assessed the expression and histological distribution of the HuR protein, an important transcript stabilizer, in tissues from experimental animals and patients with Crohn's disease. The total and cytosolic levels of the HuR protein were enhanced in the intestinal epithelia from dextran sodium sulfate (DSS)-treated mice compared to those in control tissues from normal mice. Moreover, the expression of HuR was very high only in the mucosal and glandular epithelium, and the relative localization of the protein was sequestered in the lower parts of the villus during the DSS insult. The expression of HuR was significantly higher in mucosal lesions than in normal-looking areas. Consistent with the data from the animal model, the expression of HuR was confined to the mucosal and glandular epithelium. These results suggest that HuR may contribute to the post-transcriptional regulation of proinflammatory genes during early mucosal insults. More mechanistic investigations are warranted to determine the potential use of HuR as a predictive biomarker or a promising target against IBD.

Biodegradation of Phenol by Comamonas testosteroni DWB-1-8 Isolated from the Activated Sludge of Textile Wastewater (섬유 폐수 활성 슬러지에서 분리한 Comamonas testosteroni의 생물학적 페놀 분해)

  • Kwon, Hae Jun;Choi, Doo Ho;Kim, Mi Gyeong;Kim, Dong-Hyun;Kim, Young Guk;Yoon, Hyeokjun;Kim, Jong-Guk
    • Journal of Life Science
    • /
    • v.30 no.2
    • /
    • pp.156-161
    • /
    • 2020
  • Since industrialization, the production and utilization of various chemicals has contributed to improving the quality of our lives, but the subsequent discharge of massive waste is inevitable, and environmental pollution is becoming more serious every day. Exposure to chemicals as a result of environmental pollution is having a negative effect on human health and the ecosystem, and cleaning up the polluted environment that can affect our lives is a very important issue. Toxic aromatic compounds have been detected frequently in soil, groundwater, and wastewater because of the extensive use of oil products, and phenol, which is used to produce synthetic resins, textiles, and dyes, is one of the major pollutants, along with insecticides and preservatives. Phenol can cause dyspnea, headache, vomiting, mutation, and carcinogenesis. Phenol-degrading bacterium DWB-1-8 was isolated from the activated sludge of textile wastewater; this strain was identified as Comamonas testosteroni by 16S rRNA gene sequencing. The optimal culture conditions for the cell growth and degradation of phenol were 0.7% K2HPO4, 0.6% NaH2PO4, 0.1% NH4NO3, 0.015% MgSO4·7H2O, 0.001% FeSO4·7H2O, an initial pH of 7, and a temperature of 30℃. The strain was also able to grow by using other toxic compounds, such as benzene, toluene, or xylene (BTX), as the sole source of carbon.

Study on the Genetic Characteristics of Waterlogging Tolerant Pepper (Capsicum annuum L.) for Breeding Tolerant Varieties against Flooding Stress (내습성 고추 품종 육성을 위한 선발계통의 유전적 특성 구명)

  • Yang, Eun Young;Chae, Soo-Young;Hong, Jong-Pil;Lee, Hye-Eun;Park, Eun Joon;Moon, Ji-hye;Park, Tae-Sung;Roh, Mi-Young;Kim, Ok Rye;Kim, Sang Gyu;Kim, Dae Young;Lee, Sun Yi;Cho, Myeong Cheoul
    • Journal of Life Science
    • /
    • v.27 no.10
    • /
    • pp.1111-1120
    • /
    • 2017
  • This study was conducted to select pepper lines that were tolerant to excessive water injury among the pepper germplasm and investigate the genetic characteristics of those lines to contribute to the breeding of pepper cultivars with stable productivity in abnormal weather. Each of the tolerant and susceptible lines went through immersion treatment, and differentially expressed genes between them were analyzed. The tolerant line showed increased expression of the CA02g26670 gene, which is involved in the CONSTANS protein pathway and regulation of flowering by day length, but it exhibited decreased expressions of CA01g21450, CA01g22480, CA01g34470, CA02g00370 and CA02g00380. The susceptible line showed increased gene expressions of CA02g09720, CA02g21290, CA03g16520, CA07g 02110, and CA12g17910, which are involved in the inhibition of proteolytic enzyme activity, DNA binding, inhibition of cell wall-degrading enzyme, and inhibition of nodulin, respectively. Meanwhile the expressions of CA02g02820, CA03g21390, CA06g17700 and CA07g18230 decreased in the susceptible line, in relation to calcium-ion binding, high temperature, synthesis of phosphocholine and cold stress, respectively. The expressions of genes related to apoptosis and peroxidase increased, while that of CA02g16990, which functions as a nucleoside transporter, decreased in both the tolerant and susceptible lines. Based on the different gene expressions between the tolerant and susceptible lines, further studies are needed on breeding abiotic stress-tolerant lines.

The Whole Extract of Enterococcus faecalis Has Suppressive Effect on the Allergic Responses in Asthmatic Mouse Model (천식 마우스 모델의 알러지 반응에서 Enterococcus faecalis 전체 추출물의 억제 효과)

  • Chang, Jeong Hyun;Yang, EunJu;Yu, Sun Nyoung;Ahn, Soon-Cheol
    • Journal of Life Science
    • /
    • v.27 no.10
    • /
    • pp.1168-1175
    • /
    • 2017
  • Probiotics are usually defined as intestinal bacteria that provide healthy benefit to the host and may offer new therapeutic materials for the treatment of inflammatory diseases. Lactobacillus, Bifidobacterium and Enterococcus are known as typical probiotics. But, these bacteria have mostly a weak viability and thus decreased probiotics-mediated effects in the intestinal tract. Asthma is an inflammatory airway disease, which is characterized by the releases of inflammatory mediators including cytokine and IgE. They are mainly associated with the recruitment, activation and disregulation of specific inflammatory cells, especially mast cells, monocytes, T cells, eosinophils and neutrophils in asthma. We performed these studies as in vitro and in vivo test the human inflammatory cell lines and ovalbumin (OVA)-induced asthma mouse model. And then the inhibitory effects of Enterococcus faecalis whole extract on inflammatory responses were examined. For our examinations, the E. faecalis whole extract (Ef extract) was acquired from whole bacteria of E. faecalis using freeze/thawing after ultrasonication method. As results, OVA-mediated THP-1 cell viability was decreased by the treatment of Ef extract. In the asthmatic mouse model, Ef extract inhibited the infiltration of inflammatory cells into the inflammatory sites and blood. This whole extract may have anti-asthmatic effects associated with the regulation of IL-5 and IgE expression. It may also be a promising candidate in anti-allergic medicine for the treatment of asthma.