Browse > Article
http://dx.doi.org/10.15230/SCSK.2018.44.3.249

Effects of Resveratrol and Resveratryl Triacetate on The Inflammatory Responses of Human Epidermal Keratinocytes Exposed to Airborne Particulate Matter PM10  

Choi, Min A (Department of Molecular Medicine, CMRI, BK21 Plus KNU, School of Medicine, Kyungpook National University)
Seok, Jin Kyung (Department of Molecular Medicine, CMRI, BK21 Plus KNU, School of Medicine, Kyungpook National University)
Lee, Jeong-won (Department of Molecular Medicine, CMRI, BK21 Plus KNU, School of Medicine, Kyungpook National University)
Lee, Shin Young (Ruby Crown Co., Ltd.)
Kim, Young Mi (Ruby Crown Co., Ltd.)
Boo, Yong Chool (Department of Molecular Medicine, CMRI, BK21 Plus KNU, School of Medicine, Kyungpook National University)
Publication Information
Journal of the Society of Cosmetic Scientists of Korea / v.44, no.3, 2018 , pp. 249-258 More about this Journal
Abstract
Airborne pollution causes oxidative damage, inflammation, and premature aging of skin. Resveratrol is a polyphenol compound that has various biological activities such as antioxidant, anti-inflammation, and anti-melanogenic activities but it is unstable to heat and light. Resveratryl triacetate (RTA) is a new cosmetic ingredient that is more stable than resveratrol and its skin safety and whitening efficacy have been reported previously. The purpose of this study was to examine the effects of resveratrol and resveratryl triacetate (RTA) on the inflammatory responses of human epidermal keratinocytes (HEKs) exposed to airborne particulate matters with a diameter of < $10{\mu}m$ (PM10). Cultured HEKs were exposed to PM10 in the absence or presence of resveratrol and RTA. Assays were undertaken to determine cell viability, the production of reactive oxygen species (ROS), and the expression of inflammatory cytokines. PM10 treatment decreased cell viability, and increased the expression of pro-inflammatory cytokines such as tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$), $interleukin-1{\beta}$ ($IL-1{\beta}$), interleukin-6 (IL-6), and interleukin-8 (IL-8). Resveratrol and RTA reduced cell death and ROS production induced by PM10. PM10-induced mRNA expression of the inflammatory cytokines was either attenuated (IL-6), or enhanced ($IL-1{\beta}$), or unaffected ($TNF-{\alpha}$ and IL-8) by resveratrol and RTA. PM10-induced IL-6 protein expression was attenuated by resveratrol and RTA. This study suggests that resveratrol and RTA have activities regulating cell damage and inflammatory responses of the skin exposed to airborne particulate matters.
Keywords
airborne particulate matters; resveratrol; resveratryl triacetate; keratinocytes; pro-inflammatory cytokines;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. D. Sacks, L. W. Stanek, T. J. Luben, D. O. Johns, B. J. Buckley, J. S. Brown, and M. Ross, Particulate matter-induced health effects: who is susceptible?, Environ. Health Perspect., 119(4), 446 (2012).   DOI
2 J. O. Anderson, J. G. Thundiyil, and A. Stolbach, Clearing the air: a review of the effects of particulate matter air pollution on human health, J. Med. Toxicol., 8(2), 166 (2012).   DOI
3 K. E. Kim, D. Cho, and H. J. Park, Air pollution and skin diseases: Adverse effects of airborne particulate matter on various skin diseases, Life Sci., 152(1), 126 (2016).   DOI
4 A. Vierkotter, T. Schikowski, U. Ranft, D. Sugiri, M. Matsui, U. Kramer, and J. Krutmann, Airborne particle exposure and extrinsic skin aging, J. Invest. Dermatol., 130(12), 2719 (2010).   DOI
5 R. Bengalli, E. Molteni, E. Longhin, M. Refsnes, M. Camatini, and M. Gualtieri, Release of IL-1 beta triggered by Milan summer PM10: molecular pathways involved in the cytokine release, Biomed. Res. Int., 2013(1), 158093 (2013).
6 D. Y. Cho, W. Le, D. T. Bravo, P. H. Hwang, B. Illek, H. Fischer, and J. V. Nayak, Air pollutants cause release of hydrogen peroxide and interleukin-8 in a human primary nasal tissue culture model, Int. Forum. Allergy Rhinol., 4(12), 966 (2014).   DOI
7 R. Villarreal-Calderon, W. Reed, J. Palacios-Moreno, S. Keefe, L. Herritt, D. Brooks, R. Torres-Jardon, and L. Calderon-Garciduenas, Urban air pollution produces up-regulation of myocardial inflammatory genes and dark chocolate provides cardioprotection, Exp. Toxicol. Pathol., 64(4), 297 (2012).   DOI
8 J. K. Seok, J. W. Lee, Y. M. Kim, and Y. C. Boo, Punicalagin and (-)-epigallocatechin-3-gallate rescue cell viability and attenuate inflammatory responses of human epidermal keratinocytes exposed to airborne particulate matter PM10, Skin Pharmacol. Physiol., 31(3), 134 (2018).   DOI
9 J. W. Lee, J. K. Seok, and Y. C. Boo, Ecklonia cava extract and dieckol attenuate cellular lipid peroxidation in keratinocytes exposed to PM10, Evid.-Based Complementary Altern. Med., 2018(1), 8248323 (2018).
10 S. Park, J. K. Seok, J. Y. Kwak, H. J. Suh, Y. M. Kim, and Y. C. Boo, Anti-inflammatory effects of pomegranate peel extract in THP-1 cells exposed to particulate matter PM10, Evid.-Based Complementary Altern. Med., 2016(1), 6836080 (2016).
11 A. Rauf, M. Imran, H. A. R. Suleria, B. Ahmad, D. G. Peters, and M. S. Mubarak, A comprehensive review of the health perspectives of resveratrol, Food Funct., 8(12), 4284 (2017).   DOI
12 R. Yutani, R. Teraoka, and S. Kitagawa, Microemulsion using polyoxyethylene sorbitan trioleate and its usage for skin delivery of resveratrol to protect skin against UV-induced damage, Chem. Pharm. Bull., 63(9), 741 (2015).   DOI
13 G. Fabbrocini, S. Staibano, G. De Rosa, V. Battimiello, N. Fardella, G. Ilardi, M. I. La Rotonda, A. Longobardi, M. Mazzella, M. Siano, F. Pastore, V. De Vita, M. L. Vecchione, and F. Ayala, Resveratrol-containing gel for the treatment of acne vulgaris: a single-blind, vehicle-controlled, pilot study, Am. J. Clin. Dermatol., 12(2), 133 (2011).   DOI
14 V. Karuppagounder, S. Arumugam, R. A. Thandavarayan, V. Pitchaimani, R. Sreedhar, R. Afrin, M. Harima, H. Suzuki, M. Nomoto, S. Miyashita, K. Suzuki, and K. Watanabe, Resveratrol attenuates HMGB1 signaling and inflammation in house dust mite-induced atopic dermatitis in mice, Int. Immunopharmacol., 23(2), 617 (2014).   DOI
15 S. Caglayan Sozmen, M. Karaman, S. Cilaker Micili, S. Isik, Z. Arikan Ayyildiz, A. Bagriyanik, N. Uzuner, and O. Karaman, Resveratrol ameliorates 2,4-dinitrofluorobenzene-induced atopic dermatitis-like lesions through effects on the epithelium, PeerJ, 4(1), e1889 (2016).   DOI
16 Y. C. Boo, Clinical evaluation of skin whitening ef- fect of a cream containing resveratryl triacetate, Fragrance J. Korea, 2016(3), 72 (2016).
17 R. A. Baxter, Anti-aging properties of resveratrol: review and report of a potent new antioxidant skin care formulation, J. Cosmet. Dermatol., 7(1), 2 (2008).   DOI
18 S. H. Kwon, H. R. Choi, Y. A. Kang, and K. C. Park, Depigmenting effect of resveratrol is dependent on FOXO3a activation without SIRT1 activation, Int. J. Mol. Sci., 18(6), 1213 (2017).   DOI
19 J. Park, J. H. Park, H. J. Suh, I. C. Lee, J. Koh, and Y. C. Boo, Effects of resveratrol, oxyresveratrol, and their acetylated derivatives on cellular melanogenesis, Arch. Dermatol. Res., 306(5), 475 (2014).   DOI
20 J. H. Ryu, J. K. Seok, S. M. An, J. H. Baek, J. S. Koh, and Y. C. Boo, A study of the human skin-whitening effects of resveratryl triacetate, Arch. Dermatol. Res., 307(3), 239 (2015).   DOI
21 T. C. Hsieh, Y. C. Huang, and J. M. Wu, Control of prostate cell growth, DNA damage and repair and gene expression by resveratrol analogues, in vitro, Carcinogenesis., 32(1), 93 (2011).   DOI
22 M. M. Mojtahedi and S. Samadian, Efficient and rapid solvent-free acetylation of alcohols, phenols, and thiols using catalytic amounts of sodium acetate trihydrate, J. Chem., 2013(1), 642479 (2013).
23 P. Puri, S. K. Nandar, S. Kathuria, and V. Ramesh, Effects of air pollution on the skin: A review, Indian J. Dermatol. Venereol. Leprol., 83(4), 415 (2017).   DOI
24 S. E. Mancebo and S. Q. Wang, Recognizing the im- pact of ambient air pollution on skin health, J. Eur. Acad. Dermatol. Venereol., 29(12), 2326 (2015).   DOI
25 J. Schwager, N. Richard, F. Widmer, and D. Raederstorff, Resveratrol distinctively modulates the inflammatory profiles of immune and endothelial cells, BMC Complement. Altern. Med., 17(1), 309 (2017).   DOI
26 A. Carreras, M. L. Mateos-Martin, A. Velazquez-Palenzuela, E. Brillas, S. Sanchez-Tena, M. Cascante, L. Julia, and J. L. Torres, Punicalagin and catechins contain polyphenolic substructures that influence cell viability and can be monitored by radical chemosensors sensitive to electron transfer, J. Agric. Food Chem., 60(7), 1659 (2012).   DOI
27 J. Joven, V. Micol, A. Segura-Carretero, C. Alonso-Villaverde, J. A. Menendez, and P. Bioactive, Food components, polyphenols and the modulation of gene expression pathways: can we eat our way out of the danger of chronic disease?, Crit. Rev. Food Sci. Nutr., 54(8), 985 (2014).   DOI
28 M. Gertz, T. T. N. Giang, F. Fischer, B. Suenkel, C. Schlicker, B. Franzel, J. Tomaschewski, F. Aladini, C. Becker, D. Wolters, and C. Steegborn, A molecular mechanism for direct sirtuin activation by resveratrol, PLoS One, 7(11), e49761 (2012).   DOI
29 A. Cignarella, C. Minici, C. Bolego, C. Pinna, P. Sanvito, R. M. Gaion, and L. Puglisi, Potential pro-inflammatory action of resveratrol in vascular smooth muscle cells from normal and diabetic rats, Nutr. Metab. Cardiovasc. Dis., 16(5), 322 (2006).   DOI
30 J. Walker, K. Schueller, L. M. Schaefer, M. Pignitter, L. Esefelder, and V. Somoza, Resveratrol and its metabolites inhibit pro-inflammatory effects of lipopolysaccharides in U-937 macrophages in plasma-representative concentrations, Food Funct., 5(1), 74 (2014).   DOI
31 M. Baarine, S. J. Thandapilly, X. L. Louis, F. Mazue, L. Yu, D. Delmas, T. Netticadan, G. Lizard, and N. Latruffe, Pro-apoptotic versus anti-apoptotic properties of dietary resveratrol on tumoral and normal cardiac cells, Genes Nutr., 6(2), 161 (2011).   DOI
32 S. R. Beedanagari, I. Bebenek, P. Bui, and O. Hankinson, Resveratrol inhibits dioxin-induced expression of human CYP1A1 and CYP1B1 by inhibiting recruitment of the aryl hydrocarbon receptor complex and RNA polymerase II to the regulatory regions of the corresponding genes, Toxicol. Sci., 110(1), 61 (2009).   DOI
33 J. Scheller, A. Chalaris, D. Schmidt-Arras, and S. Rose-John, The pro- and anti-inflammatory properties of the cytokine interleukin-6, Biochim Biophys Acta., 1813(5), 878 (2011).   DOI
34 T. Hidaka, E. Ogawa, E. H. Kobayashi, T. Suzuki, R. Funayama, T. Nagashima, T. Fujimura, S. Aiba, K. Nakayama, R. Okuyama, and M. Yamamoto, The aryl hydrocarbon receptor AhR links atopic dermatitis and air pollution via induction of the neurotrophic factor artemin, Nat. Immunol., 18(1), 64 (2017).   DOI
35 R. F. Casper, M. Quesne, I. M. Rogers, T. Shirota, A. Jolivet, E. Milgrom, and J. F. Savouret, Resveratrol has antagonist activity on the aryl hydrocarbon receptor: implications for prevention of dioxin toxicity, Mol. Pharmacol., 56(4), 784 (1999).
36 A. Mohammadi-Bardbori, J. Bengtsson, U. Rannug, A. Rannug, and E. Wincent, Quercetin, resveratrol, and curcumin are indirect activators of the aryl hydrocarbon receptor (AHR), Chem. Res, Toxicol., 25(9), 1878 (2012).   DOI