Browse > Article
http://dx.doi.org/10.5352/JLS.2009.19.1.123

Multiple Monoclonal Antibodies Produced in a Single Transgenic Plant  

Ahn, Mi-Hyun (Department of Biological Science, College of Natural Sciences, Wonkwang University)
Oh, Eun-Yi (Department of Biological Science, College of Natural Sciences, Wonkwang University)
Song, Mi-Ra (Department of Biological Science, College of Natural Sciences, Wonkwang University)
Lu, Zhe (Department of Biological Science, College of Natural Sciences, Wonkwang University)
Kim, Hyun-Soon (Plant Genomics Research Center, KRIBB)
Joung, Hyouk (Plant Genomics Research Center, KRIBB)
Ko, Ki-Sung (Institute of Biotechnology, Wonkwang University)
Publication Information
Journal of Life Science / v.19, no.1, 2009 , pp. 123-128 More about this Journal
Abstract
Production of highly valuable immunotherapeutic proteins such as monoclonal antibodies and vaccines using plant biotechnology and genetic engineering has been studied as a popular research field. Plant expression system for mass production of such useful recombinant therapeutic proteins has several advantages over other existing expression systems with economical and safety issues. Immunotherapy of multiple monoclonal antibodies, which can recognize multiple targeting including specific proteins and their glycans highly expressed on the surface of cancer cells, can be an efficient treatment compared to a single targeting immunotherapy using a single antibody. In this study, we have established plant production system to express two different targeting monoclonal antibodies in a single transgenic plant through crossing fertilization between two different transgenic plants expressing anti-colorectal cancer mAbCO17-1A and anti-breast cancer mAbBR55, respectively. The F1 seedlings were obtained cross fertilization between the two transgenic parental plants. The presence, transcription, and protein expression of heavy chain (HC) and light chain (LC) genes of both mAbs in the seedlings were investigated by PCR, RT-PCR, and immunoblot analyses, respectively. Among all the seedlings, some seedlings did not carry or transcribe the HC and LC genes of both mAbs. Thus, the seedlings with presence and transcription of HC and LC genes of both mAbs were selected, and the selected seedlings were confirmed to have relatively stronger density of HC and LC protein bands compared to the transgenic plant expressing only each mAb. These results indicate that the F1 seedling plant with carrying both mAb genes was established. Taken together, plant crossing fertilization can be applied to generate an efficient production system expressing multiple monoclonal antibodies for immunotherapy in a single plant.
Keywords
Crossing fertilization; mAb BR55; mAb CO17-1A;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Flieger, D., A. S. Hoff, T. Sauerbruch and I. G. Schmidt- Wolf. 2001. Influence of cytokines, monoclonal antibodies and chemotherapeutic drugs on epithelial cell adhesion molecule (EpCAM) and LewisY antigen expression. Clin. Exp. Immunol. 123, 9-14   DOI
2 Helenius, A. and M. Aebi. 2001. Intracellular functions of N-linked glycans. Science 291, 2364-2369   DOI   ScienceOn
3 Ko, K., Z. Steplewski, M. Glogowska and H. Koprowski. 2005. Inhibition of tumor growth by plant-derived mAb. Proc. Natl. Acad. Sci. USA 102, 7026-7030   DOI   ScienceOn
4 Ko, K., Y. Tekoah, P. M. Rudd, D. J. Harvey, R. A. Dwek, S. Spitsin, C. A. Hanlon, C. Rupprecht, B. Dietzschold, M. Golovkin and H. Koprowski. 2003. Function and glycosylation of plant-derived antiviral monoclonal antibody. Proc. Natl. Acad. Sci. USA 100, 8013-8018   DOI   ScienceOn
5 Luo, P., M. Agadjanyan, J. Qiu, M. A. Westerink, Z. Steplewski and T. Kieber-Emmons. 1998. Antigenic and immunological mimicry of peptide mimotopes of Lewis carbohydrate antigens. Mol. Immunol. 35, 865-879   DOI   ScienceOn
6 Ma, J. K., P. M. Drake and P. Christou. 2003. The production of recombinant pharmaceutical proteins in plants. Nat. Rev. Genet. 4, 794-805   DOI   ScienceOn
7 Madjd, Z., T. Parsons, N. F. Watson, I. Spendlove, I. Ellis and L. G. Durrant. 2005. High expression of Lewis y/b antigens is associated with decreased survival in lymph node negative breast carcinomas. Breast Cancer Res. 7, R780-87   DOI   ScienceOn
8 Muldoon, L. L. and E. A. Neuwelt. 2003. BR96-DOX immunoconjugate targeting of chemotherapy in brain tumor models. J. Neurooncol. 65, 49-62   DOI   ScienceOn
9 Nemoto-Sasaki, Y., M. Mitsuki, M. Morimoto-Tomita, A. Maeda, M. Tsuiji and T. Irimura. 2001. Correlation between the sialylation of cell surface Thomsen-Friedenreich antigen and the metastatic potential of colon carcinoma cells in a mouse model. Glycoconj. J. 18, 895-906   DOI   ScienceOn
10 Adams, G. P. and L. M. Weiner. 2005. Monoclonal antibody therapy of cancer. Nat. Biotechnol. 23, 1147-1157   DOI   ScienceOn
11 Agarwal, S., R. Singh, I. Sanyal and D. V. Amla. 2008. Expression of modified gene encoding functional human alpha-1-antitrypsin protein in transgenic tomato plants. Transgenic Res. [Epub ahead of print]
12 Bauly, J. M., I. M. Sealy, H. Macdonald, J. Brearley, S. Droge, S. Hillmer, D. G. Robinson, M. A. Venis, M. R. Blatt, C. M. Lazarus and R. M. Napier. 2000. Overexpression of auxin-binding protein enhances the sensitivity of guard cells to auxin. Plant Physiol. 124, 1229-1238   DOI   ScienceOn
13 Tacket, C. O., H. S. Mason, G. Losonsky, J. D. Clements, M. M. Levine and C. J. Arntzen. 1998. Immunogenicity in humans of a recombinant bacterial antigen delivered in a transgenic potato. Nat. Med. 4, 607-609   DOI   ScienceOn
14 Brodzik, R., M. Glogowska, K. Bandurska, M. Okulicz, D. Deka, K. Ko. J. van der Linden, J. H. Leusen, N. Pogrebnyak, M. Golovkin, Z. Steplewski and H. Koprowski. 2006. Plant-derived anti-Lewis Y mAb exhibits biological activities for efficient immunotherapy against human cancer cells. Proc. Natl. Acad. Sci. USA 103, 8804-8809   DOI   ScienceOn
15 Pai-Scherf, L. H., J. A. Carrasquillo, C. Paik, O. Gansow, M. Whatley, D. Pearson, K. Webber, M. Hamilton, C. Allegra, M. Brechbiel, M. C. Willingham and I. Pastan. 2000. Imaging and phase I study of 111In- and 90Y-labeled anti-LewisY monoclonal antibody B3. Clin. Cancer Res. 6, 1720-1730
16 Plunkett, T. A. and D. W. Miles. 2002. New biological therapies for breast cancer. Int. J. Clin. Pract. 56, 261-266
17 Richter, L. J., Y. Thanavala, C. J. Arntzen and H. S. Mason. 2000. Production of hepatitis B surface antigen in transgenic plants for oral immunization. Nat. Biotechnol. 18, 1167-1171   DOI   ScienceOn
18 Scherf, U., D. T. Ross, M. Waltham, L. H. Smith, J. K. Lee, L. Tanabe, K. W. Kohn, W. C. Reinhold, T. G. Myers, D. T. Andrews, D. A. Scudiero, M. B. Eisen, E. A. Sausville, Y. Pommier, D. Botstein, P. O. Brown and J. N. Weinstein. 2000. A gene expression database for the molecular pharmacology of cancer. Nat. Genet. 24, 236-244   DOI   ScienceOn
19 Youm, J. W., J. H. Jeon, H. Kim, Y. H. Kim, K. Ko, H. Joung and H. Kim. 2008. Transgenic tomatoes expressing human beta-amyloid for use as a vaccine against Alzheimer's disease. Biotechnol. Lett. [Epuib ahead of print]
20 Zaloudik, J., W. Li, L. Jacob, M. P. Kieny, R. Somasundaram, B. Acres, H. Song, T. Zhang, J. Li and D. Herlyn. 2002. Inhibition of tumor growth by recombinant vaccinia virus expressing GA733/CO17-1A/EpCAM/KSA/KS1-4 antigen in mice. Cancer Gene Ther. 9, 382-389   DOI   ScienceOn