• Title/Summary/Keyword: 생물기후 요인

Search Result 97, Processing Time 0.03 seconds

Exergy Analysis of Solar Collector for Solar Heated Greenhouse Design (태양열온실의 설계를 위한 집열기의 EXERGY 분석)

  • 이석건
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1993.05a
    • /
    • pp.18-19
    • /
    • 1993
  • 지상의 기상환경조절이 불가능한 노지재배는 생산의 불안정요인이 대부분 기후조건으로 부터 기인된다. 반면에 시설원예는 피복재를 이용하여 격리된 공간을 만들고 그 속에 태양에너지를 저장하고 이를 제어하여 작물의 생육에 적절한 온실환경을 조성하는 수단이며 밀폐된 공간은 외부와 격리되어 있기 때문에 열 및 물질의 전달이 억제되므로 필요한 경우에는 열, $CO_2$, 습도 및 공기의 이동 등 보조에너지의 투입이 가능하므로 보다 적절한 지상환경조건을 조성할 수 있다. (중략)

  • PDF

Damage Factor Interpretation and Conservational Environment Assessment by Microclimatic Analysis of Hyeonpung Seokbinggo (Ice-storing Stone Warehouse), Korea (현풍석빙고의 미기후 분석을 통한 손상요인 해석과 보존환경 평가)

  • Kim, Ji-Young;Lee, Chan-Hee
    • Journal of Conservation Science
    • /
    • v.26 no.4
    • /
    • pp.385-395
    • /
    • 2010
  • This study aimed to identify weathering factors and to assess the conservation environment through microclimatic analysis of Hyeonpung Seokbinggo (ice-storing stone warehouse). The stone blocks inside Seokbinggo suffered crack, displacement, break-out, exfoliation, efflorescence, brown and black discoloration, and biological colonization. Biological colonization represented the maximum deterioration rate(24%) among those weathering forms. The indoor microclimate showed parallel patterns with outdoor one, but the indoor temperature and relative humidity ranged far narrower than outdoor and remained steady. The environmental characteristics resulted from blocking-out of outdoor heat by the closed entrance and surrounding microtopography. This prevented water condensation and freezing effects, so that it reduced physical deterioration of rock, and maximized ice-storing effect for long time. However, contrary to positive effect, extremely high relative humidity over 99% accelerated biological colonization inside the Seokbinggo.

Temporal Changes of Hyalessa fuscata Songs by Climate Change (기후변화에 의한 참매미 번식울음 시기 변화 연구)

  • Kim, Yoon-Jae;Ki, Kyong-Seok
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.2
    • /
    • pp.244-251
    • /
    • 2018
  • The present study aimed to identify the influence of climate change on mating songs of Cicadidae in a phenological perspective. The research sites were located in the central part of the Korean peninsula in which phenological observations by the Meteorological Office are made. The material provided by the Meteorological Office was used for long term phenological analysis. The findings demonstrated, First, the phenological monitoring of cicada is an effective index to detect ecological changes due to climate change, thus indicating the importance of long term phenological investigations for future studies. Second, the analysis on the phenological changes of H. fuscata presented a trend in which the first songs were made at increasingly earlier and later dates, respectively. The phenological data on H. fuscata and average temperatures exhibited a significant negative correlation between the initial mating song period and the average temperatures of June. Furthermore, there was also a significant negative correlation for precipitation in October with the end time and total duration of H. fuscata song. Third, in the regression analysis of the start of H. fuscata song and meteorological factors in Seoul, increasing average air temperature in spring (March to June), which includes June, was associated with an earlier start time of H. fuscata song, with calling starting approximately 3.0-4.5 days earlier per $1^{\circ}C$ increase. Fourth, in the regression analysis of the end of H. fuscata song and meteorological factors in Seoul, increased mean precipitation in October was associated with an early end time and an overall reduction in the length of the song period. The end time of song decreased by approximately 0.78 days per 1mm increase in precipitation, and the total length of the song period decreased by 0.8 days/1mm. This research is important, as it is the initial research to identify the phenological changes in H. fuscata due to climate change.

Distribution Prediction of Korean Clawed Salamander (Onychodactylus koreanus) according to the Climate Change (기후변화에 따른 한국꼬리치레도롱뇽(Onychodactylus koreanus)의 분포 예측에 대한 연구)

  • Lee, Su-Yeon;Choi, Seo-yun;Bae, Yang-Seop;Suh, Jae-Hwa;Jang, Hoan-Jin;Do, Min-Seock
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.5
    • /
    • pp.480-489
    • /
    • 2021
  • Climate change poses great threats to wildlife populations by decreasing their number and destroying their habitats, jeopardizing biodiversity conservation. Asiatic salamander (Hynobiidae) species are particularly vulnerable to climate change due to their small home range and limited dispersal ability. Thus, this study used one salamander species, the Korean clawed salamander (Onychodactylus koreanus), as a model species and examined their habitat characteristics and current distribution in South Korea to predict its spatial distribution under climate change. As a result, we found that altitude was the most important environmental factor for their spatial distribution and that they showed a dense distribution in high-altitude forest regions such as Gangwon and Gyeongsanbuk provinces. The spatial distribution range and habitat characteristics predicted in the species distribution models were sufficiently in accordance with previous studies on the species. By modeling their distribution changes under two different climate change scenarios, we predicted that the distribution range of the Korean clawed salamander population would decrease by 62.96% under the RCP4.5 scenario and by 98.52% under the RCP8.5 scenario, indicating a sharp reduction due to climate change. The model's AUC value was the highest in the present (0.837), followed by RCP4.5 (0.832) and RCP8.5 (0.807). Our study provides a basic reference for implementing conservation plans for amphibians under climate change. Additional research using various analysis techniques reflecting habitat characteristics and minute habitat factors for the whole life cycle of Korean-tailed salamanders help identify major environmental factors that affect species reduction.

Research trends in seabird and marine fish migration: Focusing on tracking methods and previous studies (바닷새 및 해양어류의 이동 연구 동향: 위치추적 기법과 연구 사례를 중심으로)

  • Jin-Hwan Choi;Seongho Yun;Mi-Jin Hong;Ki-Ho Kang;Who-Seung Lee
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.1
    • /
    • pp.25-53
    • /
    • 2022
  • In this study, trends in research methods and topics of seabird and marine fish migration were examined. Based on the framework of existing animal migration studies, future research directions were proposed in relation to the migration of seabirds and fish. In terms of research methodology, with the development of science and technology, tracking techniques using radio telemetry, acoustic telemetry, RFID (radio-frequency identification), satellite tracking, and geolocators are widely used to study seabird and fish migration. Research is also conducted indirectly through a population survey and the analysis of substances in the body. Research contents are largely classified into extrinsic factors that affect migration(such as environmental variables and interspecific competition), intrinsic factors such as hormones, anthropogenic activities including fishery and offshore wind farm, and the effect of global climate change. In future studies, physiological factors that influence or cause migration and dispersal should be identified concerning intrinsic factors. For the analysis of migration ability, it is necessary to study effects of changes in the magnetic field on the migration ability of seabirds and fish, interspecific differences in spatiotemporal migration ability, and factors that influence the migration success rate. Regarding extrinsic factors, research studies on effects of anthropogenic disturbances such as fishery and offshore wind farm and global climate change on the migration and dispersal patterns of marine animals are needed. Finally, integrated studies on the migration of seabirds and fish directly or indirectly affecting each other in various ecological aspects are required.

Prediction of Potential Distributions of Two Invasive Alien Plants, Paspalum distichum and Ambrosia artemisiifolia, Using Species Distribution Model in Korean Peninsula (한반도에서 종 분포 모델을 이용한 두 침입외래식물, 돼지풀과 물참새피의 잠재적 분포 예측)

  • Lee, SeungHyun;Cho, Kang-Hyun;Lee, Woojoo
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.3
    • /
    • pp.189-200
    • /
    • 2016
  • The species distribution model would be a useful tool for understanding how invasive alien species spread over the country and what environmental variables contribute to their distributions. This study is focused on the potential distribution of two invasive alien species, the common ragweed (Ambrosia artemisiifolia) and knotgrass (Paspalum distichum) in the Korean Peninsula. The maximum entropy (Maxent) model was used for the prediction of their distribution by inferring their climatic environmental requirements from localities where they are currently known to occur. We obtained their presence data from the Global Biodiversity Information Facility and the Korean plant species databases and bioclimatic data from the WorldClim dataset. As a results of the modelling, the potential distribution predicted by global occurrence data was more accurate than that by native occurrence data. The variables determining the common ragweed distribution were precipitation of the driest month and annual mean temperature. Both annual and the coldest quarter mean temperatures were critical factors in determining the knotgrass distribution. The Maxent model could be a useful tool for the prediction of alien species invasion and the management of their expansion.

Development of Prediction Model on Fruit Width Using Climatic Environmental Factors in 'Fuji' Apple (기후 환경 요인을 이용한 사과 '후지'의 과실 횡경 예측 모델 개발)

  • Han, Hyun Hee;Han, Jeom Hwa;Jeong, Jae Hoon;Ryu, Suhyun;Kwon, YongHee
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.346-352
    • /
    • 2017
  • In this study, we analyzed environmental factors including annual fruit growth and meteorological conditions in Suwon area from 2000 to 2014 to develop and verify a fruit width prediction model in 'Fuji' apple. The 15-year average of full bloom data was April 28 and that of fruit development period was 181 days. The fruit growth until 36 days after full bloom followed single sigmoid curve. The environmental factors affecting fruit width were BIO2, precipitation in September, the average of daily maximum and minimum temperature in April, minimum temperature in August, and growing degree days (GDD) in April. Among them, the model was constructed by combining BIO2 and precipitation in September, which are not cross-correlated with each other or, with other factors. And then, the final model was selected as 19.33095 + (5.76242 ${\times}$ BIO2) - (0.01891 ${\times}$ September precipitation) + (2.63046 ${\times}$ minimum temperature in April) which was the most suitable model with AICc of 92.61 and the adjusted $R^2$ value of 0.53. The model was compared with the observed values f rom 2000 to 2014. As a result, the mean difference between the measured and predicted values of 'Fuji' apple fruit width was ${\pm}2.9mm$ and the standard deviation was 3.54.

Predicting Future Terrestrial Vegetation Productivity Using PLS Regression (PLS 회귀분석을 이용한 미래 육상 식생의 생산성 예측)

  • CHOI, Chul-Hyun;PARK, Kyung-Hun;JUNG, Sung-Gwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.1
    • /
    • pp.42-55
    • /
    • 2017
  • Since the phases and patterns of the climate adaptability of vegetation can greatly differ from region to region, an intensive pixel scale approach is required. In this study, Partial Least Squares (PLS) regression on satellite image-based vegetation index is conducted for to assess the effect of climate factors on vegetation productivity and to predict future productivity of forests vegetation in South Korea. The results indicate that the mean temperature of wettest quarter (Bio8), mean temperature of driest quarter (Bio9), and precipitation of driest month (Bio14) showed higher influence on vegetation productivity. The predicted 2050 EVI in future climate change scenario have declined on average, especially in high elevation zone. The results of this study can be used in productivity monitoring of climate-sensitive vegetation and estimation of changes in forest carbon storage under climate change.

Design of Agricultural Drought Impact Assessment Platform Based on WEF(Water-Energy-Food) Nexus (WEF(물-에너지-식량) 넥서스 기반 농업 가뭄 영향 평가를 위한 플랫폼 설계)

  • Na, Ra;Joo, Donghyuk;Kim, Hayoung;Yoo, Seung-Hwan;Choi, Gyuhoon;Oh, Bu-Yeong;Hur, Seung-oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.292-292
    • /
    • 2022
  • 가뭄은 사회기반시설, 인적 자본 등과 같은 자산에 직접적인 영향을 미치지 않으나 물을 중요한 투입재로 사용하는 농업부문에 피해가 집중된다. 가뭄 재해는 준비와 대응에 따라 피해에 큰 차이가 크기 때문에 다른 재해와는 달리 강도뿐만 아니라 지속기간을 고려해야 한다. 효과적인 가뭄 위험 관리를 위해서는 가뭄의 특징과 가뭄 준비 및 대응 수단에 따른 환경 및 경제적 영향을 평가할 수 있는 모형 구축과 다양한 농업자원을 동시적으로 연계 평가하여 지속가능성을 판단할 수 있는 기술 개발이 필요하다. 이에 본 연구에서는 기후변화 등의 외부요인을 반영한 물-에너지-식량 (Water-Energy-Food, WEF) 넥서스 기반 농업 가뭄 평가 플랫폼 설계를 제안하고자 한다. 이를 위해 물-에너지-식량 넥서스 연계 해석 고도화 기술을 개발하고, 생물-물리학적 모델 및 경제학적 모델 연계형 기후-토양-물-에너지-식량 넥서스 (CS-WEF NEXUS) 플랫폼을 구축하여, 최종적으로 기후변화 및 농업부문 가뭄 준비 및 대응 수단의 영향 평가를 바탕으로 한 의사결정 지원 도구를 제시하는 것이 최종 목표이다. 본 연구에서 구축된 플랫폼은 넥서스 연계 해석을 통해 농업 가뭄 대응을 위한 식량 및 에너지 안보 정책에도 미칠 수 있는 영향을 분석할 수 있으며, 다양한 식량-물-에너지 정책들이 타 요소들에 미치는 영향을 쉽게 평가할 수 있다는 점에서 정책적 의사결정 지원 시스템으로서 활용도가 높을 것으로 예상한다.

  • PDF

The Relationship between Climate and Food Incidents in Korea (식품안전 사건 사고와 기후요소와의 관련성)

  • Lee, Jong-Hwa;Kim, Young-Soo;Baek, Hee-Jung;Chung, Myung-Sub
    • Journal of Climate Change Research
    • /
    • v.2 no.4
    • /
    • pp.297-307
    • /
    • 2011
  • This study investigates relation of food safety incidents with climate. Therefore food safety incidents and climate data during 1999 to 2009 have been analyzed. In situ observations of monthly mean temperature, maximum temperature, minimum temperature, precipitation, and relative humidity in 60 observation stations of Korean Meteorological Administration (KMA) have been used in this study. Food safety incidents data have been constructed by searching media reports following Park's method (2009) during the same period. According to the Park's method, 729 events were collected. To analyze its relations, food safety incidents data have been classified into chemical, biological, and physical hazards. Pearson product-moment correlation coefficients have been applied to analyze the relations. The correlation of food safety incidents has negative one with precipitation (-0.48), and positive one with minimum temperature(0.45). Precipitation has been correlated with biological and physical hazards more than chemical hazard. Temperatures (mean temperature, maximum temperature, and minimum temperature) have been correlated closely with chemical hazard than others. Food safety incidents data has been interblended with human behavior factor through decision-making processes in food manufacturing, processing, and consumption phases of "farm-totable" food processing. Act in the preventing damage will be obvious if the hazard were apparent. Therefore abnormal condition could be more dangerous than that of apparent extreme events because apparent events or extreme events become one of alarm over hazards. Therefore, human behavior should be considered as one of the important factors for analysis of food safety incidents. The result of this study can be used as a better case study for food safety researches related to climate change.