DOI QR코드

DOI QR Code

Distribution Prediction of Korean Clawed Salamander (Onychodactylus koreanus) according to the Climate Change

기후변화에 따른 한국꼬리치레도롱뇽(Onychodactylus koreanus)의 분포 예측에 대한 연구

  • Lee, Su-Yeon (Division of Life Sciences, Incheon National University) ;
  • Choi, Seo-yun (Animal Resources Division, National Institute of Biological Resources) ;
  • Bae, Yang-Seop (Division of Life Sciences, Incheon National University) ;
  • Suh, Jae-Hwa (Animal Resources Division, National Institute of Biological Resources) ;
  • Jang, Hoan-Jin (Invasive Alien Species Research Team, National Institute of Ecology) ;
  • Do, Min-Seock (Animal Resources Division, National Institute of Biological Resources)
  • 이수연 (인천대학교 생명과학부) ;
  • 최서윤 (국립생물자원관 동물자원과) ;
  • 배양섭 (인천대학교 생명과학부) ;
  • 서재화 (국립생물자원관 동물자원과) ;
  • 장환진 (국립생태원 외래생물연구팀) ;
  • 도민석 (국립생물자원관 동물자원과)
  • Received : 2021.06.09
  • Accepted : 2021.10.07
  • Published : 2021.10.31

Abstract

Climate change poses great threats to wildlife populations by decreasing their number and destroying their habitats, jeopardizing biodiversity conservation. Asiatic salamander (Hynobiidae) species are particularly vulnerable to climate change due to their small home range and limited dispersal ability. Thus, this study used one salamander species, the Korean clawed salamander (Onychodactylus koreanus), as a model species and examined their habitat characteristics and current distribution in South Korea to predict its spatial distribution under climate change. As a result, we found that altitude was the most important environmental factor for their spatial distribution and that they showed a dense distribution in high-altitude forest regions such as Gangwon and Gyeongsanbuk provinces. The spatial distribution range and habitat characteristics predicted in the species distribution models were sufficiently in accordance with previous studies on the species. By modeling their distribution changes under two different climate change scenarios, we predicted that the distribution range of the Korean clawed salamander population would decrease by 62.96% under the RCP4.5 scenario and by 98.52% under the RCP8.5 scenario, indicating a sharp reduction due to climate change. The model's AUC value was the highest in the present (0.837), followed by RCP4.5 (0.832) and RCP8.5 (0.807). Our study provides a basic reference for implementing conservation plans for amphibians under climate change. Additional research using various analysis techniques reflecting habitat characteristics and minute habitat factors for the whole life cycle of Korean-tailed salamanders help identify major environmental factors that affect species reduction.

기후변화는 동·식물의 서식지와 개체군을 감소, 소멸시키며, 생물다양성 보존에 위협이 되고 있다. 특히, 도롱뇽과 (Hynobiidae)에 속한 종들은 다른 분류군들에 비해 행동권이 작고, 분산 능력이 극히 제한되기 때문에 기후변화에 매우 취약한 분류군이다. 본 연구에서는 한국꼬리치레도롱뇽(Onychodactylus koreanus)의 관찰지점과 종 분포 모델링 기법을 바탕으로 국내 서식하고 있는 한국꼬리치레도롱뇽의 주요 분포지역과 서식특성을 파악하고 기후변화에 따른 분포변화를 예측하였다. 그 결과 고도가 그들의 분포에 가장 주요한 영향을 끼친 환경변수로 확인되었으며, 강원도와 경상북도와 같은 고도가 높은 산림 지역에 밀집된 분포 형태를 보였다. 이처럼 종 분포 모델에서 예측된 공간적 분포 범위와 서식특성은 선행 조사 결과를 충분히 포함하고 있었다. 기후변화에 따른 분포변화를 확인한 결과, 한국꼬리치레도롱뇽은 현재 분포 범위에 비해 RCP4.5 시나리오에서 62.96% 가 감소할 것으로, RCP8.5 시나리오에서는 98.52% 감소할 것으로 예측되어 기후변화로 인해 서식 적합 공간들이 급격하게 감소하는 것으로 확인되었다. 모델의 AUC값은 현재에서 0.837, RCP4.5에서 0.832, RCP8.5에서 0.807로 높게 측정되었다. 이러한 결과들은 기후변화로 인해 영향을 받는 양서류의 보전 대책 수립에 중요한 기초자료가 될 수 있을 것이다. 추후, 한국꼬리치레도롱뇽의 생활사에 따른 서식지 특성과 미세한 서식 요인들이 반영된 다양한 분석기법을 통한 추가적인 연구가 수행된다면 종 감소에 영향을 끼치는 주요환경 요인들을 밝혀낼수 있을 것으로 판단된다.

Keywords

Acknowledgement

전국자연환경조사와 국립공원자연자원조사, 멸종위기종 분포조사 등 양서·파충류분야 분야 담당자와 현장 조사에 참여해주신 모든 조사원분들께 감사의 말씀을 전해드립니다. 본 논문은 정부(환경부)의 재원으로 국립생물자원관의 지원을 받아 수행하였습니다(NIBR202102102, NIBR202108101).

References

  1. Allen, J.L. and R.T. Mcmullin(2019). Modeling algorithm influence on the success of predicting new populations of rare species: Ground-truthing models for the Pale-Belly Frost Lichen(Physconia subpallida) in Ontario. Biodiversity and Conservation 28(7): 1853-1862. https://doi.org/10.1007/s10531-019-01766-z
  2. Blank, L. and L. Blaustein(2012) Using ecology niche modeling to predict the distributions of two endangered amphibian species in aquatic breeding sites. Hydrobiologia 693: 157-167. https://doi.org/10.1007/s10750-012-1101-5
  3. Blaustein, A.R. and J.M. Kiesecker(2002) Complexity in conservation: Lessons from the global decline of amphibian populations. Ecology Letters 5(4): 597-608. https://doi.org/10.1046/j.1461-0248.2002.00352.x
  4. Borzee, A., D. Andersen, J. Groffen, H.T. Kim, Y.H. Bae and Y.K. Jang(2019) Climate change-based models predict range shifts in the distribution of the only Asian plethodontid salamander: Karsenia koreana. Scientific Reports 9(1): 1-9. https://doi.org/10.1038/s41598-018-37186-2
  5. Carey, C. and M.A. Alexander(2003) Climate change and amphibian declines: Is there a link? Diversity and Distributions 9(2): 111-121. https://doi.org/10.1046/j.1472-4642.2003.00011.x
  6. Carignan, V. and M.A. Villard(2002) Selecting indicator species to monitor ecological integrity: A review. Environmental Monitoring and Assessment 78: 45-61. https://doi.org/10.1023/A:1016136723584
  7. Cho, D.G. and Y.J. Shim(2016) Planning of Narrow-mouth Frog (Kaloula borealis) habitat restoration using Habitat Suitability Index (HSI). Ecology and Resilient Infrastructure 3(1): 062-069. (in Korean with English abstract) https://doi.org/10.17820/eri.2016.3.1.062
  8. Choi, W.J., D. Park, J.K. Kim, J.H. Lee, D.I. Kim and I.H. Kim(2018) Changes in the Reproductive Population Size of the Huanren Brown Frog (Rana huanrenensis) and Wonsan Salamander (Hynobius leechii), which Breeding in Mountain Valleys, According to Climate Change. Korean Journal of Environmental and Ecology 32(6): 582-590. (in Korean with English abstract) https://doi.org/10.13047/KJEE.2018.32.6.582
  9. Collins, M., R. Knutti, J. Arblaster, J.L. Dufresne, T. Fichefet, P. Friedlingstein, X. Gao, W.J. Gutowski, T. Johns, G. Krinner, M. Shongwe, C. Tebaldi, A.J. Weaver, M.F. Wehner, M.R. Allen, T. Andrews, U. Beyerle, C.M. Bitz, S. Bony and B.B.B. Booth(2013) Long-term Climate Change: Projections, Commitments and Irreversibility. In: T.F. Stocker, D. Qin, G.K. Plattner, M.M.B. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley(eds.), Climate Change 2013-The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York, pp.1029-1136.
  10. D'Amen, M., P. Bombi, P.B. Pearman, D.R. Schmatz, N.E. Zimmermann and M.A. Bologna(2011) Will climate change reduce the efficacy of protected areas for amphibian conservation in Italy? Biological Conservation 144(3): 989-997. https://doi.org/10.1016/j.biocon.2010.11.004
  11. Do, M.S., H.J. Jang, D.I. Kim and J.C. Yoo(2016) Interspecific Competition and spatial Ecology of three Species of Vipers in Korea: An Application of Ecological niche-based Models and GIS. Korean Journal of Environment and Ecology 30(2): 173-184. (in Korean with English abstract) https://doi.org/10.13047/KJEE.2016.30.2.173
  12. Do, M.S., H.J. Jang, D.I. Kim, K.S. Koo, S.C. Lee and H.K. Nam(2018) The study on habitat analysis and ecological niche of Korean Brown Frogs (Rana dybowskii, R. coreana and R. huanrensis) using the species distribution model. Korean Journal of Herpetology 9: 1-11. (in Korean with English abstract)
  13. Do, M.S., J.W. Lee, H.J. Jang, D.I. Kim, J.W. Park and J.C. Yoo(2017) Spatial Distribution Patterns and Prediction of Hotspot Area for Endangered Herpetofauna Species in Korea. Korean Journal of Environment and Ecology 31(4): 381-396. (in Korean with English abstract) https://doi.org/10.13047/KJEE.2017.31.4.381
  14. Do, M.S., S.J. Son, G. Choi, N.K. Yoo, K.S. Koo and H.K. Nam(2021). Anuran Community Patterns in the rice fields of the mid-western region of the Republic of Korea. Global Ecology and Conservation 26: 1-15. (in Korean with English abstract)
  15. Donnelly, M.A. and M.L. Crump(1998) Potential Effects of Climate Change on Two Neotropical Amphibian Assemblages. Climatic Change 39: 541-561. https://doi.org/10.1023/A:1005315821841
  16. Fauth, J.E. and W.J. Resetarits(1991) Interactions Between the Salamander Siren intermedia and the Keystone predator Notophthalmus Viridescens. Ecological Society of America 72(3): 827-838.
  17. Gardner, T.(2001) Declining amphibian populations: A global phenomenon in conservation biology. Animal Biodiversity and Conservation 24: 25-44.
  18. Hernandez, P.A., C.H. Graham, L.L. Master and D.L. Albert(2006) The effect of sample size and species characteristics on performance of different species distribution modelling methods. Ecography 29(5): 773-785. https://doi.org/10.1111/j.0906-7590.2006.04700.x
  19. Hijmans, R.J., L. Guarino and P. Mathur(2012) DIVA-GIS. Version 7.5. A geographic information system for the analysis of species distribution data. Bioinformatics 19.
  20. Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones and A. Jarvis(2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965-1978. https://doi.org/10.1002/joc.1276
  21. Hong, N.R.(2017) Habitat environmental characteristics of Korean clawed salamander (Onychodactylus koreanus) at Mt. Baegun in Guangyang, Jeonnam province. Master's thesis, Seoul National University.
  22. IPCC(1990) Climate change: The IPCC scientific assessment report. University Press.
  23. IPCC(2007) Climate change 2007, Mitigation of Climate Change. Contribution Working Group III Contribution to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, New york, USA, 176pp.
  24. IPCC(2014) Climate Change 2014, Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland, 151pp.
  25. Jacobsen, C.D., D.J. Brown, W.D. Flint, T.K. Pauley, K.A. Buhlmann and J.C. Mitchell(2020) Vulnerability of high-elevation endemic salamanders to climate change: A case study with the Cow Knob Salamander (Plethodon punctatus). Global Ecology and Conservation 21: 1-12.
  26. Jang, H.J. and J.H. Suh(2010) Distribution of Amphibian species in South Korea. Korean Journal of Herpetology 2: 45-51. (in Korean with English abstract)
  27. Jeung, S., J. Park, D. Yang and B. Kim(2019) The Future of Extreme Climate Change in the Korean Peninsula Using National Standard Climate Change Scenarios and the ETCCDI Index. Journal of the Korean Society of Hazard Mitigation 19(7): 105-115. (in Korean with English abstract) https://doi.org/10.9798/kosham.2019.19.7.105
  28. Jimenez-Valverde, A.(2012) Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Global Ecology and Biogeography 21(4): 498-507. https://doi.org/10.1111/j.1466-8238.2011.00683.x
  29. Jung, J.H., E.J. Lee, W.S. Lee and C.D. Park(2019) Habitat suitability models of Korean crevice salamander (Karsenia koreana) at forested area in Daejeon metropolitan city, Republic of Korea. Journal of Forest Research 24(6): 349-355. https://doi.org/10.1080/13416979.2019.1693479
  30. Kim, J.B.(2009) Taxonomic list and distribution of Korean Amphibians. Korean Journal of Herpetology 1(1): 1-13. (in Korean with English abstract)
  31. Kim, J.H., J.H. Lee, M.J. Park and J.G. Joo(2016) Effect of Climate Change Scenarios and Regional Climate Models on the Drought Severity-Duration-Frequency Analysis. The Journal of the Korean Society of Hazard Mitigation 16(2): 351-361. (in Korean with English abstract) https://doi.org/10.9798/KOSHAM.2016.16.2.351
  32. Lee, J.H., H.J. Jang and J.H. Suh(2011) Ecological Guide Book of Herpetofauna in Korea. NIER, Incheon. (in Korean)
  33. Lee, J.H., N.Y. Ra, J.H. Eom and D.S. Park(2008) Population Dynamics of the Long-tailed Clawed Salamander Larva, Onychodactylus fischeri, and Its Age Structure in Korea. Journal of Ecology and Environment 31(1): 31-36. (in Korean with English abstract) https://doi.org/10.5141/JEFB.2008.31.1.031
  34. Lee, J.W., H.J. Noh, Y.J. Lee, Y.S. Kwon, C.H. Kim and J.C. Yoo(2014) Spatial patterns, ecological niches, and interspecific competition of avian brood parasites: Inferring from a case study of Korea. Ecology and Evolution 4(18): 3689-3702. (in Korean with English abstract) https://doi.org/10.1002/ece3.1209
  35. Lobo, J.M., A. Jimenez-Valverde and R. Real(2008) AUC: A misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography 17(2): 145-151. https://doi.org/10.1111/j.1466-8238.2007.00358.x
  36. Lovejoy, T.E. and L. Hannah(2005) Climate change and biodiversity. Yale University Press, Michigan, 387pp.
  37. Manenti, R., G.F. Ficetola and F.D. Bernardi(2009) Water, stream morphology and landscape: Complex habitat determinants for the fire salamander Salamandra salamandra. AmphibiaReptilia 30(1): 7-15.
  38. Milanovich, J.R., W.E. Peterman, N.P. Nibbelink and J.C. Maerz(2010) Projected Loss of a Salamander Diversity Hotspot as a Consequence of Projected Global Climate Change. PLOS One 5(8): 1-10.
  39. Moritz, C., J.L. Patton, C.J. Conroy, J.L. Parra, G.C. White and S.R. Beissinger(2008) Impact of a Century of Climate Change on Small-Mammal Communities in Yosemite National Park, USA. Science 322(5899): 261-264. https://doi.org/10.1126/science.1163428
  40. Park, B.S.(1994) Amphibia and Reptilia Fauna by Sport and Leisure Complex-Amphibia and Reptilia Fauna in Minjujisan Area, Korea-. Ecology and Resilient Infrastructure 8(1): 68-73. (in Korean with English abstract)
  41. Park, S.H. and K.H. Cho(2017) Comparison of Health Status of Japanese Tree Frog (Hyla japonica) in a Rural and an Urban Area. Korean Society of Ecology and Resilient Infrastructure 4(1): 71-74. (in Korean with English abstract) https://doi.org/10.17820/eri.2017.4.1.071
  42. Pearson, R.G. and T.P. Dawson(2003) Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Global Ecology and Biogeography 12(5): 361-371. https://doi.org/10.1046/j.1466-822X.2003.00042.x
  43. Penman, T.D., D.A. Pike, J.K. Webb and R. Shine(2010) Predicting the impact of climate change on Australia's most endangered snake, Hoplocephalus bungaroides. Diversity and Distributions 16(1): 109-118. https://doi.org/10.1111/j.1472-4642.2009.00619.x
  44. Phillips, S.J. and M. Dudik(2008) Modelling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 31(2): 161-175. https://doi.org/10.1111/j.0906-7590.2008.5203.x
  45. Phillips, S.J., M. Dudik and R.E. Schapire(2004) A Maximum entropy approach to species distribution modeling. Proceeding of the 21st International Conference on Machine Learning, Banff, Canada.
  46. Phillips, S.J., M. Dudik, J. Elith, C.H. Graham, A. Lehmann, J. Leathwick and S. Ferrier(2009) Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecological Applications 19(1): 181-197. https://doi.org/10.1890/07-2153.1
  47. Pimm S.L.(2008) Biodiversity: Climate change or habitat loss-which will kill more species? Current Biology 18(3): 117-119.
  48. Pounds, J.A., M.P.L. Fogden and J.H. Campbell(1999) Biological response to climate change on a tropical mountain. Nature 398: 611-614. https://doi.org/10.1038/19297
  49. Pradhan, P.(2016) Strengthening MaxEnt modelling through screening of redundant explanatory bioclimatic variables with variance inflation factor analysis. Researcher 8(5): 29-34.
  50. Sewell, D. and R.A. Griffiths(2009) Can a Single Amphibian Species Be a Good Biodiversity Indicator? Diversity 1(2): 102-117. https://doi.org/10.3390/d1020102
  51. Song, J.Y. and I. Lee(2009) Elevation distribution of Korean Amphibians. Korean Journal of Herpetology 1(1): 15-19. (in Korean with English abstract)
  52. Sutton, W.B., K. Barrett, A.T. Moody, C.S. Loftin, P.G. DeMaynadier and P. Nanjappa(2015) Predicted Changes in Climatic Niche and Climate Refugia of Conservation Priority Salamander Species in the Northeastern United States. Forests 6(1): 1-26. https://doi.org/10.3390/f6010001
  53. United Nations Environment Programme(UNEP)(1997) Negotiating a sustainable future land.
  54. Van Riemsdijk, I., J.W. Arntzen, S. Bogaerts, M. Franzen, S.N. Litvinchuk, K. Olgun and B. Wielstra(2017) The Near East as a cradle of biodiversity: A phylogeography of banded newts (genus Ommatotriton) reveals extensive inter-and intraspecific genetic differentiation. Molecular Phylogenetics and Evolution 114: 73-81. https://doi.org/10.1016/j.ympev.2017.05.028
  55. Van Vuuren, D.P., J. Edmonds, M. Kainuma, K. Riahi, A. Thomson, K. Hibbard, G.C. Hurtt, T. Kram, V. Krey, J.F. Lamarque, T. Masui, M. Meinshausen, N. Nakicenovic, S.J. Smith and S.K. Rose(2011) The representative concentration pathways: An overview. Climate Change 109: 5-31. https://doi.org/10.1007/s10584-011-0148-z
  56. Velo-Anton, G., J.L. Parra, G. Parra-Olea and K.R. Zamudio(2013) Tracking climate change in a dispersal-limited species: Reduced spatial and genetic connectivity in a montane salamander. Molecular Ecology 22(12): 3261-3278. https://doi.org/10.1111/mec.12310
  57. Wake, D.B. and V.T. Vredenburg(2008) Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proceedings of the National Academy of Sciences 105 (Supplement 1): 11466-11473.
  58. Welsh Jr, H.H. and G.R. Hodgson(2013). Woodland salamanders as metrics of forest ecosystem recovery: A case study from California's redwoods. Ecosphere 4(5): 1-25. https://doi.org/10.1890/ES12-00400.1
  59. Whiles, M.R., K.R. Lips, C.M. Pringle, S.S. Kilham, R.J. Bixby, R. Brenes, S. Connelly, J.C. Colon-Gaud, M. Hunte-Brown, A.D. Huryn, C. Montgomery and S. Peterson(2006) The effects of amphibian population declines on the structure and function of Neotropical stream ecosystems. Frontiers in Ecology and the Environment 4(1): 27-34. https://doi.org/10.1890/1540-9295(2006)004[0027:TEOAPD]2.0.CO;2
  60. Wisz, M.S., R.J. Hijmans, J. Li, A.T. Peterson, C.H. Graham and A. Guisan(2008) Effects of sample size on the performance of species distribution models. Diversity and Distributions 14(5): 763-773. https://doi.org/10.1111/j.1472-4642.2008.00482.x
  61. Yi, Y.J., X. Cheng, Z.F. Yang and S.H. Zhang(2016) Maxent modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan, China. Ecological Engineering 92: 260-269. https://doi.org/10.1016/j.ecoleng.2016.04.010
  62. Yun, S., J.W. Lee and J.C. Yoo(2020) Host-parasite interaction augments climate change effect in an avian brood parasite, the lesser cuckoo Cuculus poliocephalus. Global Ecology and Conservation 22: 1-12. (in Korean with English abstract)