DOI QR코드

DOI QR Code

Development of Prediction Model on Fruit Width Using Climatic Environmental Factors in 'Fuji' Apple

기후 환경 요인을 이용한 사과 '후지'의 과실 횡경 예측 모델 개발

  • Han, Hyun Hee (Fruit Research division, National Institute of Horticultural & Herbal Science) ;
  • Han, Jeom Hwa (Fruit Research division, National Institute of Horticultural & Herbal Science) ;
  • Jeong, Jae Hoon (Fruit Research division, National Institute of Horticultural & Herbal Science) ;
  • Ryu, Suhyun (Fruit Research division, National Institute of Horticultural & Herbal Science) ;
  • Kwon, YongHee (Fruit Research division, National Institute of Horticultural & Herbal Science)
  • 한현희 (국립원예특작과학원 과수과) ;
  • 한점화 (국립원예특작과학원 과수과) ;
  • 정재훈 (국립원예특작과학원 과수과) ;
  • 류수현 (국립원예특작과학원 과수과) ;
  • 권용희 (국립원예특작과학원 과수과)
  • Received : 2017.07.07
  • Accepted : 2017.10.11
  • Published : 2017.10.31

Abstract

In this study, we analyzed environmental factors including annual fruit growth and meteorological conditions in Suwon area from 2000 to 2014 to develop and verify a fruit width prediction model in 'Fuji' apple. The 15-year average of full bloom data was April 28 and that of fruit development period was 181 days. The fruit growth until 36 days after full bloom followed single sigmoid curve. The environmental factors affecting fruit width were BIO2, precipitation in September, the average of daily maximum and minimum temperature in April, minimum temperature in August, and growing degree days (GDD) in April. Among them, the model was constructed by combining BIO2 and precipitation in September, which are not cross-correlated with each other or, with other factors. And then, the final model was selected as 19.33095 + (5.76242 ${\times}$ BIO2) - (0.01891 ${\times}$ September precipitation) + (2.63046 ${\times}$ minimum temperature in April) which was the most suitable model with AICc of 92.61 and the adjusted $R^2$ value of 0.53. The model was compared with the observed values f rom 2000 to 2014. As a result, the mean difference between the measured and predicted values of 'Fuji' apple fruit width was ${\pm}2.9mm$ and the standard deviation was 3.54.

본 연구는 사과 '후지'의 과실 횡경 예측 모델을 개발하고 검증하고자, 수원지역에서 2000년부터 2014년까지의 연차간 과실 생장과 기상을 포함한 환경요인들을 분석하였다. 2000년부터 2014년까지의 평균 만개일은 4월 28일이었고, 만개 후 수확일까지의 성숙일수는 평균 181일이었다. 만개 후 약 36일 이후부터의 과실 생장은 단일 S자 곡선이었으며, 과실 횡경에 영향을 미치는 환경요인들은 BIO2, 9월강수량, 4월 최고 최저 평균기온, 8월 최저기온, 그리고 4월의 생육도일이었다. 그 중에서, 서로 간의 요인이 교차 상관관계를 나태내지 않는 BIO2와 9월 강수량을 각각 다른 요인들과 조합하여 모델을 만들었다. 선발된 모델 중에서 AICc가 92.61이며 보정된 $R^2$ 값이 0.53으로 가장 적합도가 높았던 모델을 선택하였으며 그 최종 모델식은 19.33095+(5.76242${\times}$BIO2)-(0.01891${\times}$9월강수량)+(2.63046${\times}$4월최저온도)이었다. 이 모델을 2000년부터 2014년까지의 실측치와 비교하였는데, 사과 '후지'과실 횡경의 실측치와 예측치의 평균차이는 ${\pm}2.9mm$, 표준편차는 3.54였다.

Keywords

References

  1. Atkinson, C.J., L.Taylor, and J.M. Taylor. 1995. The influence of temperature and water supply on apple fruit growth and the development of orchard-grown trees. J. Hort. Sci. 70:691-703.
  2. Austin, P.T., A.J. Hall, P.W.Gandar, I.J. Warrington, T.A. Fulton, and E.A. Halligan. 1999. A compartment model of the effect of early-season temperatures on potential size and growth of 'Delicious' apple fruits. Ann. Bot. 83:129-143. https://doi.org/10.1006/anbo.1998.0804
  3. Bergh, O. and V. De Cloete. 1992. Effect of different day and night temperature on the diurnal growth rate of terminal and lateral fruits in Golden Delicious apple. S. Afr. J. Plant Soil. 9:68-72. https://doi.org/10.1080/02571862.1992.10634606
  4. Calderon-Zavala, G., N. Lakso, and R.M. Piccioni. 2004. Temperature effects on fruit and shoot growth in the apple (Malus domestica) early in the season. Acta Hort. 636:447-453.
  5. Chakespari, A.G., A. Rajabipour, and H. Mobli. 2010. Mass modeling of two apple varieties by geometrical attributes. Aust. J. Agric. Eng. 1:112-118.
  6. Day K, G. Lopez, and T.M. DeJong. 2008. Using growing degree hours accumulated thirty days after bloom to predict peach and nectarine harvest date. VIIIth ISHS on Modelling in Fruit Research. Acta Hort. 80:163-166.
  7. DeJong, T.M. and J. Goudriaan. 1989. Modeling peach fruit growth and carbohydrate requirements: reevaluation of the double-sigmoid growth pattern. J. Am. Soc. Hort. Sci. 114:800-804.
  8. De Silva, H.N., D.S. Tustin, W.M. Cashmore, C.J. Stanley, G. Lupton, and S.J. McArtney. 1997. Fruit fresh mass diameter relationship for 'Royal Gala' apple across seasons and among fruit production regions of New Zealand. Hort-Science. 32:1169-1173.
  9. Endo, M. 1975. Studies on the daily change in fruit size of the Japanese pear. IV. Influence of shading on diurnal fluctuation of fruit. J. Japan. Soc. Hort. Sci. 43:347-358. https://doi.org/10.2503/jjshs.43.347
  10. Goffinet, M.C., T.L. Robinson, and A.N. Lakso. 1995. A comparison of Empire apple fruit size and anatomy in unthinned and had-thinned tress. J. Hort. Sci. 70:375-387.
  11. Gujarati, D.N. and D.C. Porter. 2008. Basic Econometrics, McGraw-Hill.
  12. Han, H.H., J.H. Han, J.H. Jeong, S.H. Ryu and Y.H. Kwan. 2016. Analysis of environmental factors for full bloom stage and fruit growth in peach. J. Climate Change Research. 7:493-498 (in Korean). https://doi.org/10.15531/ksccr.2016.7.4.493
  13. Han, J.W., I.C. Son, I.M. Choi, S.H. Kim, J.G. Cho, S.K. Yun, H.C. Kim, and T.C. Kim. 2013. Relationship between yearly fruit growth and climate factors in 'Niitaka' pear. Kor. J. Hort. Sci. Technol. 31:8-13 (in Korean).
  14. Husnu, D. and D. Leyla. 2007. Prediction model for estimating peach fruit weight and volume on basis of fruit linear measurements during growth. J. Fruit Ornam. Plant Res. 15:65-69.
  15. Hwang, Y.S., I. Kim and J.C. Lee, 1998. Influence of harvest date and postharvest treatments on fruit quality during storage and simulated marketing in 'Fuji' apples. Hortic., Environ. Biotechnol. 39:574-578 (in Korean).
  16. Jones, H.G. 1981. Carbon dioxide exchange of developing apple (Malus pumila Mill.) Fruits. J. Expt. Bot. 32:95-98.
  17. Kaack, K. and H.L. Pedersen. 2010. Prediction of diameter, weight and quality of apple fruit(Malus domestica Borkh) cv. 'Elsta' using climatic variable and their interaction. Europ. Hort. Sci. 75:60-70.
  18. Kim, C.M. 2002. Effects of climatic parameters on flowering, fruiting and fruit quality of Satsuma Mandarin (Citrus unshiu Marc.) in Jeju island, Department of Horticulture, Jeju University (in Korean).
  19. Kim, K.P. and W.J. Lee. 2005. A study on improvement in forecasting production of apple. Korea Rural Economic Institute (in Korean).
  20. Kim, M.R. and S.G. Kim. 2014. Examining impact of weather factors on apple yield. Kor. J. Agr. For. Met. 16:274-284 (in Korean).
  21. Lopez, G. and T.M. DeJong. 2007. Spring temperatures have a major effect on early stages of peach fruit growth. J. Hortic. Sci. Biotechnol. 82:507-512. https://doi.org/10.1080/14620316.2007.11512266
  22. Marra, F.P., P. Inglese, T.M. DeJong, and R.S. Jhonson. 2002. Thermal time requirement and harvest time forecast for peach cultivars with different fruit development periods. Proc. 5th IS on Peach. Acta Hort. 592:523-529.
  23. Meier, U., H. Graf, H. Hack, M. Hess, W. Kennel, R. Klose, D. Mapples, D. Seipp, R. Stauss, J. Streif, and T. Van den boom. 1994. Phanologische entwick-lungsstadien des kernobstes (Malus domestica Borkh. und Pyrus commuis L.), des steinobstes (Prunus-Arten), der Johannisbeere(Ribes-Arten) und Erdbeere(Fragaria x ananassa Duch.). Nachrichtenbl. Deut. Pflanzenschutzd. 46:141-153.
  24. Neter, J., M.H. Kutner, C.J. Nachtsheim, and W. Wasserman. 1996. Applied linear statistical models: regression, analysis of variance, and experimental designs. Fourth edition. Irwin, Chicago, Illinois, USA.
  25. Noguchi, Y., K. Sakai., S. Asada, L. Garciano, and A. Sasao. 2003. Modeling of alternate bearing in Satsuma Mandarinlinear dynamic model based on ensemble set for harvested fruits number. Japan J. Agric. Eng. 65:55-61.
  26. Ortega, S., S. Fuentes, and J.B. Retamales. 1998. Models for predicting fruit diameter of Packham's Triumph Pears. Acta Hort. 475:295-302.
  27. Park, M.S., Y.J. Kim, H.K. Park, Y.S. Chang, and J.H. Lee. 1995. Using air temperature and sunshine duration data to select seed production site for Eleutherococcus senticosus Max. Kor. J. Crop. Sci. 40:444-450 (in Korean).
  28. Park, Y.M., H.G. Park and B.S. Lim. 2011. Analysis of postharvest 1-MCP treatment and CA storage effects on quality changes of 'Fuji' apples during export simulation. Kor. J. Hort. Sci. Technol. 29:224-231 (in Korean).
  29. Salisbury, F.B. and C.W. Ross. 1992. Plant physiology. 4th ed. Wadsworth, Belmont, California, p. 329-355, 551-574, 585.
  30. Song, K.J., J.H. Hwang and H.K. Yun. 2003. Changes of soluble sugar and starch concentration in fruits of apple cultivars differing in maturity. Hortic., Environ. Biotechnol. 44:207-210 (in Korean).
  31. Stajnko, D., M. Lakota, and M. Hocevar. 2004. Estimation of number and diameter of apple fruits in the orchard during the growing season by thermal imaging. Comput. Electron. Agric. 42:31-42. https://doi.org/10.1016/S0168-1699(03)00086-3
  32. Stajnko, D., J. Rakun, and M. Blanke. 2009. Modeling apple fruit yield using image analysis for fruit colour, shape and texture. Eur. J. Hort. Sci. 74:260-267.
  33. Warrington, I.J., T.A. Fulton, E.A. Halligan, and H.N. De Silva. 1999. Apple fruit growth and maturity are affected by early season temperatures. J. Am. Soc. Hort. Sci. 124:468-477.
  34. Wulfsohn, D., F. Aravena Zamora, C. Potin Tellez, I. Zamora Lagos, and M. Garcia-Finana. 2012. Multilevel systematic sampling to estimate total fruit number for yield forecasts. Prec. Agric. 13:256-275. https://doi.org/10.1007/s11119-011-9245-2
  35. Zadraver, P., R. Veberic, F. Stampar, V. Schmitzer and K. Eler. 2014. Fruit growth patterns of four apple cultivars using nonlinear growth models. Europ. J. Hort. Sci. 79:52-59.
  36. Zalom F.G., P.B. Goodell, L.T. Wilson, W.W. Barnett, and W.J. Bentley. 1983. Degree-days: the calculation and use of heat units in pest management. In: Leaflet 21373. Division of Agriculture and Natural Resources, University of California, Berkeley.