• 제목/요약/키워드: 상황인식 상황 불확실성

검색결과 65건 처리시간 0.026초

모바일 상황인식 컴퓨팅에서의 불확실성 관리 기법 (Uncertainty Management Technology in Mobile Context-Awareness Computing)

  • 김훈규;원유헌
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권9호
    • /
    • pp.111-120
    • /
    • 2013
  • 상황인식 컴퓨팅에서의 불확실성은 주로 상황 획득 메커니즘과 상황처리의 복잡성에 영향을 준다. 상황인식 어플리케이션에 불확실성이 존재하면 어플리케이션에 사용자 만족도에 손상을 주고 이를 쓸모없게 만든다. 본 논문은 상황에 대한 불확실성의 원천을 식별하고, 불확실한 상황정보를 표현하며 이들을 처리하는 방법을 결정할 수 있는 세 가지 전략을 제시하였다. 센서네트워크시스템은 특성상시스템전 과정에 사람의 개입이 없기 때문에 상황정보에 대한 불확실성을 제거하는 노력의 수준에 따라 시스템의 신뢰도에 영향을 주게 된다. 본 논문에서는 제안한 기법을 센서네트워크 시스템 개발에 적용하여, 불확실성 관리가 시스템개발 수명주기의 한 부분으로 적용이 될 수 있으며, 시스템을 실험한 결과 안정정인 탐지 성능을 나타냄을 확인할 수 있었다.

불확실한 환경 인식을 위한 행동 네트워크 기반 베이지안 네트워크 앙상블 기법 (Behavior Network based Bayesian Network Ensemble Methodology for Recognizing Uncertain Environment)

  • 임승빈;조성배
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 추계학술대회 학술발표 논문집 제15권 제2호
    • /
    • pp.305-308
    • /
    • 2005
  • 시각 센서를 이용한 환경 및 상황 인식은 로봇의 자동화된 행동을 위해서 매우 중요하다. 실제 환경에서 사람은 주위를 인식할 때 여러 단계의 인식과정을 거친다. 효율적이고 정확한 환경 인식을 위해서는 지능형 로봇의 인식 또한 사람의 인식과정과 같이 다단계로 이루어져야 한다. 또한 실제 환경은 유동적이며 많은 불확실성을 가지고 있으므로 불확실한 상황에 강인한 인식 방법이 필요하다. 이러한 불확실성을 내포한 환경 및 상황 인식에는 베이지안 네트워크를 이용한 인식이 강인하나 복잡한 환경을 하나의 베이지안 네트워크로 인식하는 것은 어렵다. 이 논문에서는 복잡하고 불확실한 환경 인식을 위한 여러 베이지안 네트워크를 사람의 인식과 같은 다단계의 인식 과정으로 구성된 행동 네트워크 기반으로 결합하는 앙상블 기법을 제안한다. 불확실한 상황을 적용한 환경 실험과 로봇 시뮬레이터를 이용한 로봇 실험으로 베이지안 네트워크 앙상블 기법이 환경 인식에 효과적인 것을 확인할 수 있었다.

  • PDF

효율적 웰니스 관리를 위한 통합 온톨로지 상황모델의 구현 (An Implementation of Unified Ontology Context Model for Efficient Wellness Management)

  • 정장섭;기병욱;홍승택;방대욱
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2011년도 춘계학술발표대회
    • /
    • pp.152-155
    • /
    • 2011
  • 최근 사회생활의 다변화로 인한 개인의 질환을 예방하고 건강을 증진시키기 위한 개인 웰니스 관리는 현대 사회의 성인에게는 필수적인 자기 관리에 해당된다. 본 논문는 이러한 웰니스 관리에 적절한 상황 모델로써 상황 데이터를 추론할 수 있는 SWRL 상황규칙과 불확실성을 표현한 베이지안 네트워크를 포함한 통합 온톨로지 기반 상황모델을 제시하였다. 제안한 상황모델에 포함된 추론 규칙은 웰니스 관리에 필요한 상황 서비스를 수행하는 액션들을 정의한다. 즉 상황 온톨로지에 SWRL 규칙을 포함함으로써 주로 웹 시멘틱에 사용되고 있는 OWL 언어를 상황인식 분야의 지식 베이스 구축에도 적합하도록 하였다. 그리고 웰니스 관리를 위해 상황 온톨로지로 표현되는 원시 상황 데이터는 센서 부정확성, 또는 개인 판단기준 차이로 인해 불확실성을 포함하므로, 어떤 논리적 상황 데이터는 불확실성을 고려하여 추론되어야 하기 때문에 본 논문은 상황 온톨로지 및 SWRL 규칙과 함께 베이지안 네트워크를 함께 표현할 수 있게 하여 OWL 상황 온톨로지 기반 규칙 추론뿐만 아니라 확률 추론을 용이하게 하였다.

다중추론지원 분산형 상황인식 시스템 (A Context-Aware System Supporting Distributed Processing and Multi-Reasoning)

  • 정장섭;방대욱
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(D)
    • /
    • pp.91-93
    • /
    • 2012
  • 최근 모바일 컴퓨팅 환경 지원을 실현하기 위한 연구가 전 세계적으로 활발히 진행되고 있으며, 나아가 그 중요성은 점점 더 증가하고 있다. 모바일 컴퓨팅 환경에서 지능형 서비스를 제공하기 위해서는 상황 데이터를 수집하고 적절한 가공을 통해 상황정보로 변환시켜 해석, 추론 및 학습 과정을 거쳐 사용자의 상황에 맞는 적절한 서비스를 제공할 수 있어야 한다. 본 논문은 모바일 환경에서 단일 상황추론의 한계를 개선하는 다중 상황추론과 완전히 형성되지 않은 상황정보를 기반으로 한 상황추론으로 불확실성을 지원하는 다중추론지원 분산형 상황인식 시스템을 제안한다.

유비쿼터스 컴퓨팅 환경에서의 상황 인식을 위한 확률 확장 온톨로지 모델 (Probability-annotated Ontology Model for Context Awareness in Ubiquitous Computing Environment)

  • 정헌만;이정현
    • 한국컴퓨터정보학회논문지
    • /
    • 제11권3호
    • /
    • pp.239-248
    • /
    • 2006
  • 유비쿼터스 컴퓨팅 환경에서 현재의 상황 인식 어플리케이션은 다루고 있는 상황 정보가 정확하다고 가정하지만, 실제로 센서로 입력되고 해석된 상황 정보들은 종종 모호하거나 불확실하다. 본 논문에서는 상황 정보의 모호성을 해결하기 위하여 베이지안 네트워크를 사용하고 상황 정보를 표현하기 위해 온톨로지 기반 모델을 확장한 확률 모델을 제안한다. 이 논문에서 제시한 확률 확장 온톨로지 기반 상황 인식 미들웨어는 유비쿼터스 환경에서 요구되는 다양한 상황 인식 서비스의 개발 및 운용을 효과적으로 지원 할 수 있다.

  • PDF

다중추론지원 분산형 상황인식 시스템을 위한 통합 상황모델 (An Unified Context Model for A Context-Aware System Supporting Distributed Processing and Multi-Reasoning)

  • 정장섭;홍승택;장대진;방대욱
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 추계학술발표대회
    • /
    • pp.168-171
    • /
    • 2012
  • 본 논문에서는 모바일 컴퓨팅 환경과 불확실성을 지원하는 다중추론지원 분산형 상황인식 시스템의 지식 베이스(KB: Knowledge Base)를 위한 모델로써 상황정보(OWL), 온톨로지 추론정보(OWL DL), 규칙 추론정보(SWRL), 베이지안 추론정보(PR-OWL)를 통합적으로 표현하는 UniOWL 통합상황모델을 제안한다. 제안한 통합상황모델은 상황정보와 다중 추론정보를 단일 구문, 즉 OWL 구문으로 표현하여 지식베이스 설계를 수월하게 하고 표현을 단순화하는 장점이 있다.

사용자 성향을 고려한 Dempster-Shafer Theory 기반의 불확실한 데이터 추론 (Uncertainty Data Reasoning Considering User Preferences Based on Dempster-Shafer Theory)

  • 김희성;강형구;윤희용
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(B)
    • /
    • pp.510-512
    • /
    • 2012
  • 상황인식 서비스 분야에서 불확실한 데이터를 추론하는 것은 매우 어렵고 복잡하다. 이러한 상황정보들에서 얻어지는 데이터는 불확실성을 내포하고 있어서 불확실한 추론 결과를 초래할 수 있다. 비록 불확실성 문제들을 해결하기 위해 퍼지 이론, 뉴런 네트워크, 동적 베이지안 네트워크, 은닉 마르코프 모델과 같은 여러 종류의 방법들이 제시되었지만 이러한 방법들은 가설들을 하나의 숫자에 의해 신뢰의 정도를 표시하기 때문에 많은 어려움이 있다. 본 논문에서는 사용자들이 제공받는 서비스들에 대하여 만족도를 평가한 후 수집된 데이터를 활용하여 사용자들의 상관 관계를 분석한다. 그리고 Dempster-Shafer 이론을 사용하여 사용자들로부터 측정된 믿음 값을 융합한다. 이는 불확실성 값을 낮추어 추론결과의 정확성을 높이고 증거구간을 재설정하여 사용자들에게 신뢰성 있는 적응형 서비스를 제공하게 한다.

빅데이터 분석 교육의 문제점과 개선 방안 -학생 과제 보고서를 중심으로 (Problems of Big Data Analysis Education and Their Solutions)

  • 최도식
    • 한국융합학회논문지
    • /
    • 제8권12호
    • /
    • pp.265-274
    • /
    • 2017
  • 본 논문은 빅데이터 분석 교육의 문제점을 고찰해 그 개선 방안을 제시한다. 빅데이터의 특성은 V3에서 V5로 진화하고 있다. 이에 빅데이터 분석 교육도 V5를 감안한 데이터 분석 교육이 되어야 한다. 작금 불확실성의 증대는 데이터 분석의 리스크를 증가시키기에 내적 외적 구조화/비구조화 데이터를 비롯해 교란 요인마저 분석할 때 데이터의 신뢰성은 증가될 수 있다. 그리고 평판분석을 활용할 때 범하기 쉬운 오류가 가변성과 불확실성에 대한 상황 인식이다. 가변성의 측면을 고려해, 다양한 변수와 옵션에 의한 불확실성의 상황을 인식하고 대비한 데이터 분석이 이뤄질 때 데이터에 대한 신뢰성과 정확성은 증가할 수 있다. 사회관계망 분석에서 학생들과 일반 연구자들이 주로 활용하는 것이 텍스톰과 노드엑셀의 노드 분석이다. 사화관계망 분석은 매개중심성에 의한 상황 분석을 통해 다크 데이터를 찾아 이상 현상을 감지하고 현 상황을 분석하여 유용한 의미를 얻고 미래를 예측할 수 있어야 한다.

지능형로봇 행동의 능동적 계획수립을 위한 온톨로지 기반 사용자 의도인식 (Ontology-based User Intention Recognition for Proactive Planning of Intelligent Robot Behavior)

  • 전호철;최중민
    • 한국지능시스템학회논문지
    • /
    • 제21권1호
    • /
    • pp.86-99
    • /
    • 2011
  • 사용자의 행동에 따른 의도 인식의 불확실성 때문에 사용자가 동일한 행동을 하더라도 상황에 따라 그 의도는 다르게 해석되며, 불확실성을 최소화함으로써 사용자 의도 인식의 정확성을 향상 시킬 수 있다. 본 논문에서는 사용자 의도 인식을 위한 온톨로지 기반의 새로운 방법을 제안하고, 불확실성을 최소화하는 방법을 제안한다. 제안하는 방법은 사용자 의도에 대한 온톨로지를 생성하고, 사용자 의도간 계층적 구조와 관계를 RuleML과 동적 베이지안 네트워크를 이용해서 정의하며, 온도, 습도, 시각 등의 수집된 센서 데이터와 정의된 RuleML을 통해 사용자 의도 인식을 보다 정확하게 하는 것이다. 로봇의 능동적 계획수립 방법의 성능을 평가하기 위해 시뮬레이터를 개발했고, 밝생 가능한 모든 상황에 대해 의도인식의 정확도를 측정하는 실험을 했으며, 이에 대한 결과를 제시하였다. 실험결과 비교적 높은 수준의 의도인식 정확도를 나타냈다. 그러나 불확실성을 내재한 행동이 보다 정확한 의도 인식을 방해한다는 것을 알 수 있었다.

지능형 서비스 로봇을 위한 온톨로지 기반의 동적 상황 관리 및 시-공간 추론 (Ontology-Based Dynamic Context Management and Spatio-Temporal Reasoning for Intelligent Service Robots)

  • 김종훈;이석준;김동하;김인철
    • 정보과학회 논문지
    • /
    • 제43권12호
    • /
    • pp.1365-1375
    • /
    • 2016
  • 일상생활 환경 속에서 자율적으로 동작하는 서비스 로봇에게 가장 필수적인 능력 중 하나가 동적으로 변화하는 주변 환경에 대한 올바른 상황 인식과 이해 능력이다. 다양한 센서 데이터 스트림들로 부터 신속히 의사 결정에 필요한 고수준의 상황 지식을 생성해내기 위해서는, 멀티 모달 센서 데이터의 융합, 불확실성 처리, 기호 지식의 실체화, 시간 의존성과 가변성 처리, 실시간성을 만족할 수 있는 시-공간 추론 등 많은 문제들이 해결되어야 한다. 이와 같은 문제들을 고려하여, 본 논문에서는 지능형 서비스 로봇을 위한 효과적인 동적 상황 관리 및 시-공간 추론 방법을 제시한다. 본 논문에서는 상황 지식 관리와 추론의 효율성을 극대화하기 위해, 저수준의 상황 지식은 센서 및 인식 데이터가 입력될 때마다 실시간적으로 생성되지만, 반면에 고수준의 상황 지식은 의사 결정 모듈에서 요구가 있을 때만 후향 시-공간 추론을 통해 유도되도록 알고리즘을 설계하였다. Kinect 시각 센서 기반의 Turtlebot를 이용한 실험을 통해, 제안한 방법에 기초한 동적 상황 관리 및 추론 시스템의 높은 효율성을 확인할 수 있었다.