• Title/Summary/Keyword: 상호상관 기법

Search Result 294, Processing Time 0.026 seconds

Closed-form based 3D Localization for Multiple Signal Sources (다중 신호원에 대한 닫힌 형태 기반 3차원 위치 추정)

  • Ko, Yo-han;Bu, Sung-chun;Lee, Chul-soo;Lim, Jae-wook;Chae, Ju-hui
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.2
    • /
    • pp.78-84
    • /
    • 2022
  • In this paper, we propose a closed-form based 3D localization method in the presence of multiple signal sources. General localization methods such as TDOA, AOA, and FDOA can estimate a location when a single signal source exists. When there are multiple unknown signal sources, there is a limit in estimating the location. The proposed method calculates a cross-correlation vector of signals received by sensors having an array antenna, and estimates TDOA and AOA values from the cross-correlation values. Then, the coordinate transformation is performed using the position of the reference sensor. Then, the coordinate rotation is performed using the estimated AOA value for the transformed coordinates, and then the three-dimensional position of each emitter is estimated. The proposed method verifies its performance through computer simulation.

Protein Interaction Possibility Ranking Method based on Domain Combination (도메인 조합 기반 단백질 상호작용 가능성 순위 부여 기법)

  • Han Dong-Soo;Kim Hong-Song;Jong Woo-Hyuk;Lee Sung-Doke
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.11 no.5
    • /
    • pp.427-435
    • /
    • 2005
  • With the accumulation of protein and its related data on the Internet, many domain based computational techniques to predict protein interactions have been developed. However, most of the techniques still have many limitations to be used in real fields. They usually suffer from a low accuracy problem in prediction and do not provide any interaction possibility ranking method for multiple protein pairs. In this paper, we reevaluate a domain combination based protein interaction prediction method and develop an interaction possibility ranking method for multiple protein pairs. Probability equations are devised and proposed in the framework of domain combination based protein interaction prediction method. Using the ranking method, one can discern which protein pair is more probable to interact with each other than other protein pairs in multiple protein pairs. In the validation of the ranking method, we revealed that there exist some correlations between the interacting probability and the precision of the prediction in case of the protein pair group having the matching PIP(Primary Interaction Probability) values in the interacting or non interacting PIP distributions.

An Efficient Face Recognition by Using Centroid Shift and Mutual Information Estimation (중심이동과 상호정보 추정에 의한 효과적인 얼굴인식)

  • Cho, Yong-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.4
    • /
    • pp.511-518
    • /
    • 2007
  • This paper presents an efficient face recognition method by using both centroid shift and mutual information estimation of images. The centroid shift is to move an image to center coordinate calculated by first moment, which is applied to improve the recognition performance by excluding the needless backgrounds in face image. The mutual information which is a measurements of correlations, is applied to efficiently measure the similarity between images. Adaptive partition mutual information(AP-MI) estimation is especially applied to find an accurate dependence information by equally partitioning the samples of input image for calculating the probability density function(PDF). The proposed method has been applied to the problem for recognizing the 48 face images(12 persons * 4 scenes) of 64*64 pixels. The experimental results show that the proposed method has a superior recognition performances(speed, rate) than a conventional method without centroid shift. The proposed method has also robust performance to changes of facial expression, position, and angle, etc. respectively.

A time delay estimation method using canonical correlation analysis and log-sum regularization (로그-합 규준화와 정준형 상관 분석을 이용한 시간 지연 추정에 관한 연구)

  • Lim, Jun-Seok;Pyeon, Yong-Gook;Lee, Seokjin;Cheong, MyoungJun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.4
    • /
    • pp.279-284
    • /
    • 2017
  • The localization of sources has a numerous number of applications. To estimate the position of sources, the relative time delay between two or more received signals for the direct signal must be determined. Although the GCC (Generalized Cross-Correlation) method is the most popular technique, an approach based on CCA (Canonical Correlation Analysis) was also proposed for the TDE (Time Delay Estimation). In this paper, we propose a new adaptive algorithm based on CCA in order to utilized the sparsity in the eigenvector of CCA based time delay estimator. The proposed algorithm uses the eigenvector corresponding to the maximum eigenvalue with log-sum regularization in order to utilize the sparsity in the eigenvector. We have performed simulations for several SNR(signal to noise ratio)s, showing that the new CCA based algorithm can estimate the time delays more accurately than the conventional CCA and GCC based TDE algorithms.

A Study on the Linear Array Beamforming by Cross Correlation Matrix (상호상관 행렬을 이용한 선배열 빔형성 기법 연구)

  • 황수복;이성은
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.7
    • /
    • pp.31-36
    • /
    • 2001
  • Passive sonar system forms the various beams in any desired directions to obtain the improvement in Signal-to-Noise (S/N) ratio, bearing detection and localization of targets, and the attenuation of interferences from other directions. The improvement of beamforming is very important to detect modern underwater targets as noise reduction technology leads to considerably low-level acoustic emissions in the long range in complex environmental sea. In this paper, we proposed the spatial cross correlation beamforming (SCCBF) algorithm using cross correlation matrix of individual hydrophone pairs of linear array sensors. By the theoretical analysis and simulation, the proposed SCCBF is demonstrated that its performances compared to conventional beamforming (CBF) output can be obtain above 3dB of array gain and about half of beam width represented the bearing accuracy in target detection. Also, this paper presents sea test result of linear passive sonar system that the proposed algorithm implemented.

  • PDF

Direction-of-Arrival Estimation of Speech Signals Based on MUSIC and Reverberation Component Reduction (MUSIC 및 반향 성분 제거 기법을 이용한 음성신호의 입사각 추정)

  • Chang, Hyungwook;Jeong, Sangbae;Kim, Youngil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.6
    • /
    • pp.1302-1309
    • /
    • 2014
  • In this paper, we propose a method to improve the performance of the direction-of-arrival (DOA) estimation of a speech source using a multiple signal classification (MUSIC)-based algorithm. Basically, the proposed algorithm utilizes a complex coefficient band pass filter to generate the narrow band signals for signal analysis. Also, reverberation component reduction and quadratic function-based response approximation in MUSIC spatial spectrum are utilized to improve the accuracy of DOA estimation. Experimental results show that the proposed method outperforms the well-known generalized cross-correlation (GCC)-based DOA estimation algorithm in the aspect of the estimation error and success rate, respectively.Abstract should be placed here. These instructions give you guidelines for preparing papers for JICCE.

Input Variables Selection of Artificial Neural Network Using Mutual Information (상호정보량 기법을 적용한 인공신경망 입력자료의 선정)

  • Han, Kwang-Hee;Ryu, Yong-Jun;Kim, Tae-Soon;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.1
    • /
    • pp.81-94
    • /
    • 2010
  • Input variable selection is one of the various techniques for improving the performance of artificial neural network. In this study, mutual information is applied for input variable selection technique instead of correlation coefficient that is widely used. Among 152 variables of RDAPS (Regional Data Assimilation and Prediction System) output results, input variables for artificial neural network are chosen by computing mutual information between rainfall records and RDAPS' variables. At first the rainfall forecast variable of RDAPS result, namely APCP, is included as input variable and the other input variables are selected according to the rank of mutual information and correlation coefficient. The input variables using mutual information are usually those variables about wind velocity such as D300, U925, etc. Several statistical error estimates show that the result from mutual information is generally more accurate than those from the previous research and correlation coefficient. In addition, the artificial neural network using input variables computed by mutual information can effectively reduce the relative errors corresponding to the high rainfall events.

Blind Equalization based on Maximum Cross-Correntropy Criterion using a Set of Randomly Generated Symbol (랜덤 심볼을 사용한 최대 코렌트로피 기준의 블라인드 등화)

  • Kim, Nam-Yong;Kang, Sung-Jin;Hong, Dae-Ki
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1C
    • /
    • pp.33-39
    • /
    • 2010
  • Correntropy is a generalized correlation function that contains higher order moments of the probability density function (PDF) than the conventional moment expansions. The criterion maximizing cross-correntropy (MCC) of two different random variables has yielded superior performance particularly in nonlinear, non-Gaussian signal processing comparing to mean squared error criterion. In this paper we propose a new blind equalization algorithm based on cross-correntropy criterion which uses, as two variables, equalizer output PDF and Parzen PDF estimate of a set of randomly generated symbols that complies with the transmitted symbol PDF. The performance of the proposed algorithm based on MCC is compared with the Euclidian distance minimization.

Nonlinear Analog of Autocorrelation Function (자기상관함수의 비선형 유추 해석)

  • Kim, Hyeong-Su;Yun, Yong-Nam
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.6
    • /
    • pp.731-740
    • /
    • 1999
  • Autocorrelation function is widely used as a tool measuring linear dependence of hydrologic time series. However, it may not be appropriate for choosing decorrelation time or delay time ${\tau}_d$ which is essential in nonlinear dynamics domain and the mutual information have recommended for measuring nonlinear dependence of time series. Furthermore, some researchers have suggested that one should not choose a fixed delay time ${\tau}_d$ but, rather, one should choose an appropriate value for the delay time window ${\tau}_d={\tau}(m-1)$, which is the total time spanned by the components of each embedded point for the analysis of chaotic dynamics. Unfortunately, the delay time window cannot be estimated using the autocorrelation function or the mutual information. Basically, the delay time window is the optimal time for independence of time series and the delay time is the first locally optimal time. In this study, we estimate general dependence of hydrologic time series using the C-C method which can estimate both the delay time and the delay time window and the results may give us whether hydrologic time series depends on its linear or nonlinear characteristics which are very important for modeling and forecasting of underlying system.

  • PDF