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Blind Equalization based on Maximum Cross-Correntropy
Criterion using a Set of Randomly Generated Symbol
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ABSTRACT

Correntropy is a generalized correlation function that contains higher order moments of the probability density
function (PDF) than the conventional moment expansions. The criterion maximizing cross-correntropy (MCC) of
two different random variables has yielded superior performance particularly in nonlinear, non-Gaussian signal
processing comparing to mean squared error criterion. In this paper we propose a new blind equalization
algorithm based on cross-correntropy criterion which uses, as two variables, equalizer output PDF and Parzen
PDF estimate of a set of randomly generated symbols that complies with the transmitted symbol PDF. The
performance of the proposed algorithm based on MCC is compared with the Euclidian distance minimization.

I. Introduction communications breakdown'"™, it has been an in-
creasingly focused topic in broadcasting systems,

Blind equalizers are being effectively utilized in computer communication networks".
most communication systems in order to overcome Usually the training of adaptive equalizers has
inter-symbol interference induced by multipath been accomplished through the use of mean
effects. Since blind equalizers do not require a squared etror (MSE) criterion that utilizes error
training sequence to start up or to restart after a energy. As a different approach to adjusting adap-
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tive system parameters, information-theoretic learn-
ing (ITL) method that has been introduced by
Princepe!” is based on a combination of a non-
parametric probability density function (PDF) esti-
mator and a procedure to compute information
potential (IP) or entropy.

The estimation of entropy can be calculated by
the combination of Renyi’s quadratic entropy with
the Parzen window method” using a Gaussian
kernel by computing interactions among pairs of
output samples[sl. As another ITL application
which is different from the entropy minimization
or maximization, Kullback-Leibler (KL) divergencem
minimization has been studied for training adap-
tive systems in supervised learning settings using
both labeled and unlabeled data. The KL di-
vergence is not quadratic in the PDFs, on the
other hand, the Euclidian distance (ED) between
two PDFs has been introduced as another measure
of divergence. The ED based PDF matching
methods have been successfully applied to the
classification problem with a real biomedical data
set™ and blind equalization for multipoint commu-
nication systemslg].

Entropy, divergence, or distance minimization
criteria have led the ITL method to the extension
of the fundamental definition of correlation func-
tion for random processes. The generalized corre-

10 .
M which con-

lation function is called correntropy
tains higher order moments of the PDF and is
much simpler to estimate directly from samples
than conventional moments expansions. Auto-cor-
rentropy measures one random variable similarity
across lags as the autocorrelation, but when aver-
aged across lags, it becomes the entropy of the
random variable, hence it has been named as
correntropy. Cross-correntropy handles the general
case of two arbitrary random variables and is di-
rectly related to the probability of how similar
two random variables are in the neighborhood of
the joint space controlled by the kernel size"'.

In this paper, we introduce the correntropy
concept to blind equalization and compare the
performance based on correntropy maximization

criterion with the performance based on ED mini-
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mization criterion.

This paper is organized as follows. In Section
II, we briefly describe blind equalization based on
ED minimization method using randomly gen-
erated symbols at the receiver. The concept of
cross-correntropy is  introduced concisely in
Section III. And then a new blind equalization al-
gorithm based on maximization of cross-corren-
tropy using randomly generated symbols is pro-
posed in Section IV. Section V reports simulation
results and discussions. Finally, concluding re-

marks are presented in Section VL

II. Blind Equalization based on ED
Minimization using Randomly Generated
Symbols at the Receiver

Unlike traditional trained equalization algorithms,
many of the widely employed blind equalization
algorithms employ nonlinearity at the equalizer out-

putVeto generate the error signal for weights up-
dates based on MSE criterion. In case of on-line
linear equalization, a tapped delay line (TDL) can

T
be used for input Xi =[Xe XXl output

Vi ZVVkTXk, and desired symbol de at time k.
We assume that M -ary PAM signaling systems
are employed and the all Mlevels are equally
likely to be transmitted a priori with a probability

%1 , and the transmitted levels 4, takes the

following discrete values
A4,=2m-1-M m=12,..M 6))

The Euclidian distance between the transmitted

symbol PDF Jiand the equalizer output PDF Jycan

be minimized with respect to weight W as

Min(EDLS,. £,1)= Minl [ 12 (£)d¢
+ [fde2fron0d) @

If the two distributions are close to each other,
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the ED cost function (2) minimizes the divergence
between the desired symbols and equalizer output
samples. In other words, we create desired sym-
bols for the equalizer input signal by utilizing the
PDF information of the transmitted symbols. Our
initial idea was to generate, at the receiver, ran-
dom symbols that have the same PDF of the
transmitted symbols[gl, which is introduced as

follows.

Given a set of randomly generated N symbols

D, ={d1,d2,...,dN}’ the PDF based on Parzen

window method can be approximated by

1 N
fd((:)wgq(:—d,)

R -(£-4d))’
N& aﬂexﬂ 20 ] ®

Under the assumption that all M levels are

equally likely, the number of random symbols

corresponding to each level 4w is N/M.

The point noticeable here is that the random
symbols used for Parzen PDF calculation have the
same PDF pattern as the transmitted symbols, but
the symbols are randomly generated ones at the
receiver, not the exact training symbols. This ap-
proach makes blind equalization possible. Then
the integrals of the multiplication of two PDFs in
(2) become

Iff(e‘)dé— Y6 -d) @

i=l j=1

[fed=5336,,0,-0)  ©

it j-l

jfd@)f,,(cf)dé— ZZG(,,(d -¥) ©

i=l j=1

Equation (4) can be the IP of randomly gen-

erated symbols, which is denoted as IH(d.d)in
this paper, where the subscript 1 indicates the
method 1. We note that (4) is not a function of

weight. By summing the interactions among pairs

of output samples we can obtain the IR(y,y) as

in (5). Equation (6) defined asIB{(d,») indicates
the interactions between the two different varia-

bles dandY. So the cost function can be reduced
as

R =IR(y,y)-2-IF(d,y) @)

Now a gradient descent method can be applied
for the minimization of the cost function (11)

with respect to equalizer weight as follows:

oF

w =W, —u—-
old MaW

new

®

The gradient is evaluated from

B 1L
= ( ‘—yi)
ow, 2Nzaz,~kzm,-,;my ’

Go,ﬁ(yj _yi)'(Xi _Xj)

k
NZO'Z,- Z

k-N+1, j

Mz

(dj_Yi)'Gaﬁ(dj—yi)"Yi )]

This method™ will be referred to here as mini-
mum ED (MED) algorithm for convenience sake.

. Maximum Cross Correntropy Criterion
and Cross Information Potential

Correntropy is a similarity measure that has the
analogy with the autocorrelation of two random
processes. Let a nonlinear mapping @ transform
the data to an infinite dimensional reproducing
kernel Hilbert space F. Then the auto-correntropy
function Vi)' for random process X()is

defined as
Vi(t,s) = E[< ®(X (), D(X(s)) >/] (10)

where E[] and <+ >r denote statistical ex-

pectation and inner product inF , respectively.
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1] . . .
Cross-correntropy’' " is a generalized version of
similarity measure between two scalar random

variables X and Y defined by
V(X,Y) = E[< O(X),®(Y) >/] (1n

If two scalar random variables Xand Yare
statistically independent,

V(X,Y)=< E[@(X)], E[@(Y)] >, (12)

From the view point of kernel methods,
[ =E@X)] ang [, (&)=EPD)] ae two

points in the RKHS, and the cross-correntropy is
very similar to the inner product between two

PDFs, that is, [S© SO on the other
hand, entropy is a scalar quantity that provides a
measure for the average information contained in
a given PDF. When error entropy is minimized,
the error distribution of adaptive systems is
concentrated. Renyi’s quadratic error entropy
which is effectively used in ITL methods is de-
fined as

H(e)=-log([f,(£)*d¢) (13)

2
The term ,“f 5 ($)dg in (13) is referred to as
error information potential[m. Obviously, minimiz-

ing the error entropy H © is equivalent to max-
imizing the error information potential. This crite-
rion is referred to as minimization of error en-
tropy (MEE)". From the perspective of in-
formation potential, the inner product between two

independent PDFs, jﬂ(f)'/ﬂ,(f)df can be de-
fined as cross information potential (CIP)!''.
Therefore, maximizing cross correntropy of two
independent PDFs is equivalent to maximization
of cross information potential (or the inner prod-
uct of two independent PDFs).

In the following section, we apply the max-
imization of cross-correntropy (MCC) concept to
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blind equalization by maximizing the similarity
between the Parzen PDF of equalizer output and
the Parzen PDF of randomly generated symbols
that matches with the PDF of transmitted
symbols.

IV. Blind Equalization based on MCC
Criterion using Randomly Generated
Symbols at the Receiver

Normally, modulation schemes are known to
receivers. Furthermore most transmitters use in-
dependent and identically distributed symbols.
Under these considerations, we propose to employ
MCC criterion in blind equalization using a set of
randomly generated desired symbols.

As described in Section III with a set of ran-
domly generated N symbols {dvdz’ Sy }
where the number of random symbols correspond-
ing to each level 4, is N/M, the desired PDF
based on Parzen window method can be estimated
by

£, =%ZGG(5—d,») (14)

Then, the cross information potential CIP(d,y)
between the desired PDF and output PDF be-

comes

CIP(d,y) = [f,(&),(&)d¢

z

N

=;,I—ZZ IR (15)

i=1 j=1
The gradient is calculated from

oCIP(d, y)
ow

] N N
7 2 ZZ(d, _yi)'Gaﬁ(dj _yi)'Xi (16)

O =1, j=1

In on-line systems on a sample-by-sample ba-
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sis, we can use a small sliding window and then
the gradient is evaluated from

oCIP(d, y)
o,

1 k N
ey Z Z(d, _yi)'GUﬁ(d/ —yi)'Xi 17

2 2
No® (5.3

Finally the weight update of the proposed
method can be obtained as

1 k N
W =W +u——~ d. —v.)-
=W, ﬂNzali:§+l;(, )

G sd;-y) X, (18)

where dj is one of the elements of Dv. We

will refer to this as MCC algorithm in this paper.
It is noticeable in implementation aspect that

MED in (9) is computationally cumbersome due

to the O(N 2)complexity but that of the proposed
algorithm (18) requires decreased complexity by

half of the complexity 1/2+-O(N?),
V. Simulation Results and Discussion

In the previous work”™, the MED algorithm as
a new ITL-based blind equalization technique has
shown much better performance than the conven-
tional constant modulus algorithm. In this section
we present and discuss simulation results that
compare performance of the proposed algorithm
with MED algorithm in blind equalization for two
linear channels used in [13]. The transmitted sig-
nal is composed of 4 level random symbols

{£3,21} and the channel impulse response is

1 .

h,. =§{1+COS[27Z(1—2)/BW]}, i=1,2,3. For chan-
nel 1, BW =31 is used and for channel 2, BW
=3.3. The number of taps in the linear TDL
equalizer structure is set to L= 11. The zero

mean white Gaussian noise is added to the chan-

nel output, and its variance is 0.001. As a figure
of merit of the algorithms, we use probability
density for equalizer etrors at that noise variance
and MSE learning curves of MED and the pro-
posed algorithm. For MED and the proposed al-
gorithm we set the data-block size N =20, and

the convergence parameterﬂ=0~007 for both
channel 1 and channel 2. The kernel size is chos-
en aso=05 for MED and the proposed
algorithm. All the convergence parameters are ob-
tained when the algorithms show the lowest
steady-state error performance. For channel 1 in
Fig. 1, MSE learning curve of MED algorithm
converges in about 6000 samples but the proposed
method converges in 2500 samples. Furthermore,
the proposed algorithm shows significantly lower
minimum MSE by above 5 dB. In the case of
channel 2, MED converges in the vicinity of
9000 samples but the proposed method converges
in about 3500 samples. Similar to the case of
channel 1, the proposed algorithm has 5 dB per-
formance enhancement in steady state MSE. The
comparison of probability density for equalizer er-
rors in Fig. 2 reveals that the proposed method
has more concentrated distributions to zero for
both channel models.

g J MSE Leaming Perfartmance
—&— MED-channel 1
—— MED-channel 2
—k— MCC-channel 1
~ap— WM CC-channel 2

MSE (dE)

T T T T T T T T T il
o 2000 4000 B00D 8000 10000

WNurrber of sarples

Fig. 1. MSE performance comparison of the proposed and
MED algorithm for channel ! and channel 2
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Error distribution
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Error values

Fig. 2. Probability density for error comparison of the
proposed and MED algorithm for channel 1 and channel 2

VI. Conclusions
Cross-correntropy is a generalized similarity
measure of two PDFs. Cross-correntropy can be
formulated as the inner product between two in-
dependent PDFs. In this paper, we applied the
maximization of cross-correntropy concept to blind
equalization by maximizing the similarity between
the Parzen PDF of equalizer output and the
Parzen PDF of randomly generated symbols that
matches the PDF of transmitted
Simulation results of comparison between the pro-
posed and MED revealed that the proposed meth-

symbols.

od has more concentrated distributions to zero for
channel models, which implies that the equalizer
output value satisfyingly approaches the exact
transmitted symbol by the proposed blind method
based on ‘maximization of cross-correntropy
criterion. This makes us conclude that the pro-
posed blind method can be a good candidate for
blind equalization applications. Also we can ex-
pect that MCC-based adaptive learning will yield
superior performance in adaptive signal processing
applications.

In future work, research for reduced computa-
tional complexity should be carried out for effi-

cient implementation.

38

(1]

(3]

(4)

(5

(8

(10)

References

L. M. Garth, “A dynamic convergence analysis
of blind equalization algorithms,” IEEE Trans.
on Comm., Vol.49, pp.624-634. April, 2001.
“Channel
equalization for M-QAM transmission with a
hidden pilot sequence,” IEEE Trans. on
Broadcasting, Vol.46, pp.170-176, June, 2000.
W. M. Moh and Y. Chen, “Multicasting flow
hybrid wired/wireless ATM
networks,” Performance Evaluation, Vol.40,
pp.161-194, Mar., 2000.

1. C. Principe, D. Xu and J. Fisher, Information
Theoretic Learning in: S. Haykin, Unsupervised
Adaptive Filtering, Wiley, (New York, USA),
Pp.265-319, 2000.

L. Wasserman, All of Statistics: A Concise
Course in Statistical Inference. Springer Texts
in Statistics, 2005.

S. Kullback, Information Theory and Statistics,
Dover Publications. (New York, USA), 1968.
D. Erdogmus, Y. Rao and J. C. Principe,
“Supervised Training of Adaptive Systems with
Partially Labeled Data,” Proceedings of the
International Conference on ASSP, Apr.
pp-v321-v324, 2005.

K. H. Jeong, J. W. Xu, D. Erdogmus, and J.
C. Principe, “A new classifier based on

F. Mazzenga, estimation and

control  for

information theoretic learning with unlabeled
data,” Neural Networks, 18, pp.719-726, 2005.
N. Kim and L. Yang, “A New Criterion of
Information Theoretic =~ Optimization and
Application to Blind Channel Equalization,”
Journal of Korean Society for Internet
Information, Vol.10, No.l, pp.11-17, Feb.,
2009. :

1. Santamaria, P. P. Pokharel, and J. C. Principe,
“Generalized Correlation Function: Definition,
Blind
Equalization,” Trans. on Signal Processing,
Vol.54, No.6, pp.2187-2198, Jun., 2006.

Properties, and  Application to



(11} Weifeng Liu, P. P. Pokharel, and J. C. Principe,
“Correntropy: Properties and Applications in
Non-Gaussian Signal Processing,” IEEE Trans.
Signal Processing, Vol.55, No.l1, pp.5286-
5298, Nov., 2007.

(12) D. Erdogmus, and J.C. Principe, “An Entropy
Minimization algorithm for Supervised Training
of Nonlinear Systems,” IEEE Trans. Signal
Processing, Vol.50, pp.1780-1786, July, 2002.

{13) S. Haykin, Adaptive Filter Theory. Prentice
Hall. (Upper Saddle River), 4th edition, 2001.

& Y 8 (Namyong Kim) =SS
e gt 198611 24 AAdsta AAE

g3} st

1988 29 AAdist AAF
a3} AA}

199141 89 AAista AxF
&3t what

1992\ 8¥~1998 2¢ TIE
3t AAgA e s

19981 3~A] Zdfstar Fehefst A REA
a3 wg-

<3Eol> Adaptive equalization, RBFN algorithms,
ITL algorithms, Odor sensing systems

aL
)

Z M Xl (Sung-Jin Kang) ZA13%)

19921 <dAAHEkR AR)-gst
2} FeAL

19921 <dAdska A=EE
3} AL

19921 dAldstw A
¥} FEHEka}

1998+1~200051 ETRIF-A1WH

7|1edTa
2000%~2002'd (F)o)=wz =
2002'3~2007'3 FARFATH FAM| EH Al
20073~2A F=7|gasEa JrlegIy &
RnE

<PAlRol> WPAN/WLAN, MODEM SoC

o,

E [§ 7| (Dae-Ki Hong) Z2)3]
1997 AeehEar Z35e 33t
3 33t
199933 A3t AAEsts}
A
2003 dAEE Ayt
FappA)

20033~2006%1 AAR-E-

¥y

FAVENZ AFAlE
2006d~87) AEste gt YugAges
z—vn.{[:

<Al Hol TAEAL o] EEA, WPAN/WLAN

39



