• Title/Summary/Keyword: 상하동요

Search Result 61, Processing Time 0.019 seconds

CFD Analysis of Two-Dimensional Floating Body with Moon Pool under Forced Heave Motion (문풀을 가지는 2차원 부유체의 강제 상하동요에 대한 CFD 해석)

  • Heo, Jae-Kyung;Park, Jong-Chun;Kim, Moo-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.36-46
    • /
    • 2011
  • A two-dimensional floating body with a moon pool under forced heave motion, including a piston mode, is numerically simulated. A dynamic CFD simulation is carried out to thoroughly investigate the flow field around a two-dimensional moon pool over various heaving frequencies. The numerical results are compared with experimental results and a linear potential program by Faltinsen et al. (2007). The effects of vortex shedding and viscosity are investigated by changing the corner shapes of the floating body and solving the Euler equation, respectively. The flow fields, including the velocity, vorticity, and pressure fields, are discussed to understand and determine the mechanisms of wave elevation, damping, and sway force.

A study on heave motion of Spar Platform with the Helical fin (Helical fin을 가진 Spar Platform의 상하동요에 관한 연구)

  • Park, Ro-Sik;Jung, Chang-Min
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.245-248
    • /
    • 2006
  • The development of offshore structures have been increased spectacularly, especially in oil rig structures. This study concerns with the effects of heave motion of spar platform that attached the helical fin. There are three models, namely, cylinder, cylinder-truss and cylinder-cell with different geometrical dimensions are examined. Finally, the interaction between structure and fluid is closely considered. As the results, it can be seen that the existence of helical fin does not influence on surging but it affects a little on heaving of spar platform.

  • PDF

Natural Frequency of 2-dimensional Heaving Circular Cylinder (상하동요하는 2차원 원주의 고유진동수)

  • Lee, Seung-Joon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.4
    • /
    • pp.389-395
    • /
    • 2008
  • It is very well known that the natural frequency of an oscillating body on the free surface is determinable only after the added mass is given. However, it is hard to find analytical investigations in which actually the natural frequency is obtained. Difficulties arise from the fact that in order to determine the natural frequency we need to compute the added mass at least for a range of frequencies, and to solve an equation where the frequency is a variable. In this study, first, a formula is obtained for the added mass, and then an equation for finding the natural frequency is defined and solved by Newton's iteration. It is confirmed that the formula shows a good agreement with the results given by Ursell(1949), and the value of natural frequency is reduced by 21.5% compared to the pre-natural frequency, which is obtained without considering the effect of added mass.

The Evaluation of Hydrodynamic Resistance and Motion Response Characteristics of Platform Supply Vessel (해양플랜트지원선의 저항성능과 운동응답특성에 관한 연구)

  • Seo, Kwang-Cheol;Gim, Ok-Sok;Ryu, Youn-Chul;Atlar, Mehmt;Lee, Gyoung-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.4
    • /
    • pp.397-402
    • /
    • 2013
  • In this study, numerical hull form development of a platform supply vessel, a full scale with the overall length of 26.75m, was performed to predict a bare-hull resistance and a large scale of model tests with a 1/10 scaled model were conducted to verify the success of numerical results. Numerical analysis on heave and pitch motion as a function of encounter frequency and ship's speed for the prediction of seakeeping characteristics are also presented. The experiment results of resistance agreed well with numerical analysis. As a result in the motion response characteristics, the heave RAO indicates high values with the range of encounter frequency 1.8~2.0. The Pitch RAO indicates high motion response characteristics at Beaufort scale No. 3 and 4 in rough seas.

Dynamic Interaction of Waves with a Moored Structure (계류된 구조물에 작용하는 파도의 동적작용에 대하여)

  • Kim, Chang-Je
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.94-102
    • /
    • 1992
  • This paper presents the method of numerical analysis concerned with the hydropdynamic forces and moments of the floating bodies exerted by waves. The analytic methods of hydrodynamic wave forces and moments for large volume structures are generally classified into four categories ; the strip method, the boundary element method, the finite element method, and the potential matching method. In the case of the comparatively large structures, diffraction theory can be applied. However, there are no application limits of diffraction theory which have been known concerning with the analytic method of the rectangular structures. In this paper, the two-dimensional B.E.M. is treated for a moored small rectangular structure in order to evaluate applicability of diffraction theory. Numerical calculation is carried out for the structure. The results are compared with some other ones for verification. The result shows that diffraction theory is applicable to structures smaller than 0.15 in the ratio of the representative structure length d to wave length L for rectangular ones.

  • PDF

Controller design for SWATHS (쌍동선을 위한 제어기의 구성)

  • 박찬식;이장규;박성희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.503-505
    • /
    • 1986
  • 주어진 제어대상 모델에 대하여 제어기를 구성하여 실제로 적용하는 경우 모델의 불일치, 모델링에서 고려하지 않은 외란(disturbance), 측정잡음등에 의하여 성능이 설계시와 달라진다. 실제적용에서도 성능을 계속 유지하기 위하여 제어기는 안정성, 계수변화(parameter variation)에 대한 강인성(robustness), 외란상쇄(disturbance rejection) 및 측정잡음에 둔감함등의 특성을 가져야 한다. 귀환(feedback)을 사용하여 제어기를 구성하는 경우 위의 모든 조건을 만족 시킬 수 없으므로 제어목적에 따라 적당한 조건을 선정하여 중요한 특성을 주로 갖게 한다. 본 논문에서는 쌍동선(small waterplane area twin hull ship-SWATHS)에 대하여 PID, LQ, LQG 제어기를 구성하여 안정성, 계수 변화에 대한 강인성, 외란 상쇄 및 측정잡음의 영향을 비교하였다. 쌍동선의 경우 다른 단동선(mono hull ship)에 비하여 접수면(waterplane)이 적으므로 무게증변을 흡수할 수 있는 복원력이 약하여 적은 외력에도 상하동요(heave)와 종동요(pitch)가 심하게 일어난다. 이러한 동요를 줄이는 것이 쌍동선의 제어목적이다. 본 연구에서는 먼저 선형화된 수직축 운동방정식을 이용하여 선체운동의 모델을 구했으며 중첩의 원리(super-position theorem)에 의하여 주파수 응답의 합으로 파도입력을 모델링 하였으며 제어를 위하여 필요한 측정치는 IMU(Inertial Measurement Unit)에서 제공된다고 가정하였다. 쌍동선의 동요의 원인은 파도, 바람, 조류 등이 있으나 파도에 의한 영향이 가장 크므로 본 논문에서는 파도에 의한 영향만을 고려하였다. 파도는 쌍동선에 외란으로 작용하며 측정할 수 없는 양이므로 PID, LQ 제어에서는 제어모델에 포함되지 않지만 LQG 제어에서는 제어모델에 포함된다. LQG 제어의 경우 제어모델에 파도를 백색잡음으로 가정하고 제어기를 구성한 것 (LQG1)과 2차의 쉐이핑필터(shaping filter)를 사용하여 구성한 것(LQG2)으로 나누었다.

  • PDF

Natural Frequency of 2-Dimensional Heaving Circular Cylinder: Frequency-Domain Analysis (상하동요하는 2차원 원주의 고유진동수: 주파수 영역 해석)

  • Lee, Dong-Yeop;Lee, Seung-Joon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.2
    • /
    • pp.111-119
    • /
    • 2013
  • The concept of the natural frequency is useful for understanding the characters of oscillating systems. However, when a circular cylinder floating horizontally on the water surface is heaving, due to the hydrodynamic forces, the system is not governed by the equation like that of the harmonic one. In this paper, in order to shed some lights on the more correct use of the concept of the natural frequency, a problem of the heaving circular cylinder is analyzed in the frequency domain. Previously, it was thought that the theory of Ursell (1949) could not be used to get the added mass and wave-making damping for short waves, however, they were obtained by applying an accurate collocation method to the theory in this study. Using the so developed numerical method, we found the added mass and wave-making damping of the circular cylinder for the entire range of the frequency. Then, the MCFR(Modulus of Complex Frequency Response) was used to locate the frequency corresponding to the local maximum of MCFR and we define it as the natural frequency. Comparing our results with the previous investigation, we found that the pressure distribution on the cylinder gets close asymptotically to that of a cylinder in infinite fluid OR close to that of the cylinder, that the approximation of the natural frequency by Lee (2008) is different from our new value only by 0.64%, and that the approximation of the heaving system by an equivalent damped harmonic oscillation is not proper by the reason that is clearly shown from the comparison of the shape of the corresponding MCFRs.

On the Improved Numerical Method for Hydrodynamic Forces Acting on an Arbitrary Cylinder in the Time Domain (2차원 주상체의 강제 동요시 동유체력의 시간 영역 해석법에 관하여)

  • Y.S.,Shin;K.P.,Rhee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.1
    • /
    • pp.63-72
    • /
    • 1990
  • The linear hydrodynamic forces, acting on a forced oscillating cylinder from its mean position on a free surface with a small amplitude, are calculated in the time domain. The integral equation method using a time dependent Green function is employed. The numerical results for the heaving and swaying circular cylinder are shown and give good agreements with others Furthermore it is shown that the use of the Green function, which is expressed by a series expansion or asymptotic expansion according to time range, reduces computing time greatly.

  • PDF

Nonlinear Vortical Forced Oscillation of Floating Bodies (부유체의 대진폭 운동에 기인한 동유체력)

  • 이호영;황종흘
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.2
    • /
    • pp.86-97
    • /
    • 1993
  • A numerical method is developed for the nonlinear motion of two-dimensional wedges and axisymmetric-forced-heaving motion using Semi-Largrangian scheme under assumption of potential flows. In two-dimensional-problem Cauchy's integral theorem is applied to calculate the complex potential and its time derivative along boundary. In three-dimensional-problem Rankine ring sources are used in a Green's theorem boundary integral formulation to salve the field equation. The solution is stepped forward numerically in time by integrating the exact kinematic and dynamic free-surface boundary condition. Numerical computations are made for the entry of a wedge with a constant velocity and for the forced harmonic heaving motion from rest. The problem of the entry of wedge compared with the calculated results of Champan[4] and Kim[11]. By Fourier transform of forces in time domain, added mass coefficient, damping coefficient, second harmonic forces are obtained and compared with Yamashita's experiment[5].

  • PDF