• Title/Summary/Keyword: 상태궤환

Search Result 216, Processing Time 0.028 seconds

Stability and Complexity of Static Output Feedback Controllers (고정형 출력 궤환 제어기의 안정성과 복잡도)

  • Yang, Janghoon
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.4
    • /
    • pp.325-335
    • /
    • 2018
  • Limited access to state information in the design of a feedback controller has brought out a significant amount of research on the design of an output feedback controller. Despite its long endeavor to find an optimal one, it is still an open problem. Thus, we focus on the comparison of existing states of arts in the design of a static output feedback controller in terms of stability and complexity so as to find further research direction in this field. To this end, we present eight design methods in a unified presentation. We also provide the complete description of algorithms which can be applicable to any system configuration. Stability performance and complexity in terms of processing time are evaluated through numerical simulations. Simulation results show that the algebraic controller (AC) algorithm [20] has the smallest complexity while the scaling linear matrix inequality (SLMI) algorithm [18] seems to achieve the best stability in most cases with much higher complexity.

Response Characteristics of Aeroelastic Systems Using Robust Controller (강인한 제어기를 이용한 공탄성 시스템의 응답특성)

  • Na, Sungsoo;Jeong, In-Joo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.4 s.97
    • /
    • pp.437-444
    • /
    • 2005
  • This paper presents a robust aeroelastic control methodology of a two dimensional flapped wing system exposed to an incompressible flow field. A robust controller is designed using a linear matrix inequality (LMI) approach for the multiobjective synthesis. The design objectives are to achieve a mix of $H_{\infty}$ performance and H₂ performance satisfying constraints on the closed loop pole locations in the presence of model uncertainties. Numerical examples are presented to demonstrate the effectiveness of LMI approach in damping out the aeroelastic response of 3-DOF flapped wing system.

Design of a Digital Robust Control Using Observer for Manipulator (관측기를 이용한 강인한 디지털 로보트제어)

  • 이보희;김진걸
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.12
    • /
    • pp.2353-2363
    • /
    • 1994
  • This paper is concerned with the design of a robust digital controller using reduced-order observer on a robotic manipulator under the disturbance. In most cases of robotic manipulator since all state vectors are not measurable, the unmeasurable state vectors must be estimated or reconstructed. Other problems are caused by the nonlinear element like as nondifferentiable Coulomb friction, disturbance due to the gravitational pull, and the torsional spring effect of a link between the drive motor and the manipulator arm. The controller is based on feeding back the observable variables and the estimated state variables which are generated by the observer, and augmenting the system by additional discrete integrators. The feedback gain parameters are obtained by first applying the optimal control theory and then readjusting the feedback parameters to eliminate the limit cycle by using describing Function for nonlinear hybrid system.

  • PDF

H control of 2-mass system using partial state feedback and resonance ratio control (부분적인 상태궤환과 공진비제어를 이용한 2관성계의 H제어)

  • 김진수;유상봉
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.4
    • /
    • pp.36-44
    • /
    • 2003
  • In the industrial motor drive system which is composed of a motor and load connected with a flexible shaft, a torsional vibration is often generated because of the elastic elements in torque transmission. To solve this problem, the two degrees of freedom H$_{\infty}$ controller was designed. But it is difficult to realize that controller. In this paper, H$_{\infty}$ control of 2-mass system using partial state feedback and resonance ratio control is proposed. Proposed controller has simple structure but satisfies the attenuation of disturbances and vibrations.

Multi-Constant Modulus Algorithm for Blind Decision Feedback Equalizer (블라인드 결정 궤환 등화기를 위한 다중 계수 알고리즘)

  • Kim, Jung-Su;Chong, Jong-Wha
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.6
    • /
    • pp.709-717
    • /
    • 2002
  • A new multi constant modulus algorithm (MCMA) for a blind decision feedback equalizer is proposed. In order to avoid the error propagation problem in the conventional DFE structure, Feed-Back Filter coefficients are updated only after Feed-Forward Filter coefficients are sufficiently converged to the steady state. Therefore, it has the problem of slow convergence speed characteristics. To overcome this drawback, the proposed MCMA algorithm uses not only new cost function considering the minimum distance between the received signal and the representative value containing the statistical characteristics of the transmitted signal, but also adaptive step-size according to the equalizer outputs to fast convergence speed of FBF. Simulations were carried out under the certified communication channel environment to evaluate a performance of the proposed equalizer. The simulation results show that the proposed equalizer has an improved convergence and SER performance compared with previous methods. The proposed techniques offer the possibility of practical equalization for cable modem and terrestrial HDTV broadcast (using 8-VSB or 64-QAM) applications.

Adaptive Output-feedback Neural Control of uncertain pure-feedback nonlinear systems (불확실한 pure-feedback 비선형 계통에 대한 출력 궤환 적응 신경망 제어기)

  • Park, Jang-Hyun;Kim, Seong-Hwan;Jang, Young-Hak;Ryoo, Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.6
    • /
    • pp.494-499
    • /
    • 2013
  • Based on the state-feedback adaptive neuro-control algorithm for a SISO nonaffine pure-feedback nonlinear system proposed in [15], an output-feedback controller is proposed in this paper. The output-feedback adaptive neural-net controller for the considered nonlinear system has not been previously proposed in any other literatures yet. The proposed output-feedback controller inherits all the advantages of [15] such that it does not adopt backstepping and this results in relatively simple control and adapting laws. Only one neural network is required for the proposed adaptive controller. The proposed neural-net control scheme expands the applicable class of nonlinear systems.

A Study on Yaw Control of Multi-Fan Hovering with SRFIMF (SRFIMF를 이용한 멀티팬 부상기의 YAW제어에 관한 연구)

  • 박선국;최부귀
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.4
    • /
    • pp.361-370
    • /
    • 1992
  • A controller of the hovering VTOL aircraft with four fan is constructed by SRFIMF(State Rate Feedback Implicit Model-Following)theory, in which feedback state are angle acceleration, angle velocity and angle position of the aircraft during hover With yaw control of the system, characteristics of the hovering aircraft can be analyzed by changing states feedback gain and sponse provides robust stable hovering system.

  • PDF

A Study on the Active Vibration Control of the Flexible Robot Arm Using a Rate Gyro (레이트 자이로를 이용한 유연한 로봇팔의 진동제어에 관한 연구)

  • 임준영;박인오;오준호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1112-1118
    • /
    • 1990
  • The end tip position control of a flexible robot arm has been presented by utilizing the feedback signal from the rate-gyro mounted at the end tip. Kalmann filter and the state feedback gains were determined by optimal sense based upon the parameter from the geometrical and electrical data of the flexible arm system. The simulation and experiment were performed and it has been proved that implementation of the rate-gyro drastically improves the performance.

State Feedback Control of the Neutral Leg in Three-Phase Four-Wire Inverter Considering Parameter Variations (파라미터 변동을 고려한 3상 4선식 인버터 Neutral Leg의 상태궤환제어)

  • Han, Jungho;Kim, Heungkyu;Lee, Youngil;Song, Joongho
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.514-515
    • /
    • 2014
  • 3상 4선식 인버터에서 불평형 부하는 중성선 전류를 증가시키고, 이는 직류링크 전압 불 평형을 야기한다. 이러한 이유로, neutral leg을 추가하여 불평형 부하에서 중성선전류와 직류링크전압 불평형을 제어방법이 제안되었다. 본 논문은 상태궤환제어를 이용하여 중성선전류와 직류링크전압 불평형을 제어하는 neutral leg 제어기설계 방법을 제안한다. 제안한설계 방법은 neutral leg의 파라미터 변동에도 우수한 특성을 가진다. 시뮬레이션을 통하여 본 논문이 제안한 제어방법의 타당성과 실효성을 증명한다.

  • PDF