DOI QR코드

DOI QR Code

Stability and Complexity of Static Output Feedback Controllers

고정형 출력 궤환 제어기의 안정성과 복잡도

  • Yang, Janghoon (Department of New Media, Seoul Media Institute of Technology)
  • 양장훈 (서울미디어대학원대학교 뉴미디어학부)
  • Received : 2018.07.30
  • Accepted : 2018.08.21
  • Published : 2018.08.31

Abstract

Limited access to state information in the design of a feedback controller has brought out a significant amount of research on the design of an output feedback controller. Despite its long endeavor to find an optimal one, it is still an open problem. Thus, we focus on the comparison of existing states of arts in the design of a static output feedback controller in terms of stability and complexity so as to find further research direction in this field. To this end, we present eight design methods in a unified presentation. We also provide the complete description of algorithms which can be applicable to any system configuration. Stability performance and complexity in terms of processing time are evaluated through numerical simulations. Simulation results show that the algebraic controller (AC) algorithm [20] has the smallest complexity while the scaling linear matrix inequality (SLMI) algorithm [18] seems to achieve the best stability in most cases with much higher complexity.

상태 궤환 제어기 설계에 있어서 상태 정보에 대한 접근의 제한성 때문에, 출력 궤환 제어기 설계에 대한 많은 연구가 수행되어 왔다. 그럼에도 불구하고 최적의 출력 궤한 제어기 설계는 여전히 풀리지 않은 문제로 남아 있다. 따라서, 기존에 수행되었던 관련한 다양한 고정형 출력 궤한 제어기 설계 연구 결과를 리뷰하고 복잡도와 안정성 관점에서 성능을 평가 비교함으로써 이 분야의 연구의 방향을 찾고자 한다. 또한, 기존 연구에서 제한적인 시스템 구성에서 제시되었던 알고리즘들을 어떤 시스템 구성에서도 적용가능할 수 있도록 리뷰하는 알고리즘을 완벽하게 제공한다. 리뷰하는 알고리즘은 모의 실험을 통해서 안정성 성능과 연산 시간으로 측정된 복잡도를 통하여 비교 평가한다. 모의실험 결과에 따르면, 대수에 의한 제어기 설계 알고리즘[20]이 가장 적은 복잡도를 가지는 반면에 스케링 변환 기반의 선형 행렬 부등식 알고리즘[18]이 대부분의 경우에 고복잡도를 가지고 가장 좋은 성능을 갖음을 확인하였다.

Keywords

References

  1. N. Jazdi, "Cyber physical systems in the context of Industry 4.0," in Proceeding of Automation, Quality and Testing, Robotics, Cluj-Napoca: Romania, May 2014.
  2. E. A. Lee, "Cyber Physical Systems: Design Challenges," in Proceedomg of 11th IEEE International Symposium on Object Oriented Real-Time Distributed Computing (ISORC), Orlando: FL, May 2008.
  3. J. Sztipanovits, X. Koutsoukos, G. Karsai, N. Kottenstette, P. Antsaklis, V. Gupta, B. Goodwine, J. Baras, and S. Wang, “Toward a Science of Cyber-Physical System Integration,” Proceedings of the IEEE, Vol. 100, No. 1, pp. 29-44, Jan. 2012. https://doi.org/10.1109/JPROC.2011.2161529
  4. M. Mizoguchi, and T. Ushio, "Output Feedback Controller Design with Symbolic Observers for Cyber-physical Systems," in Proceeding of the The First Workshop on Verification and Validation of Cyber-Physical Systems, Reykjavik: Iceland, pp. 37-51, June 2016.
  5. V. Blondel, M. Gevers, and, A. Lindquis, “Survey on the State of Systems and Control,” European Journal of Control, Vol. 1, No. 1, pp. 5-23, 1995. https://doi.org/10.1016/S0947-3580(95)70004-8
  6. V.L.Syrmos, C.T.Abdallah, P.Dorato, and K.Grigoriadis, "Static output feedback-A survey", Automatica, Vol. 33, No. 2, pp. 125-137, Feb. 1997. https://doi.org/10.1016/S0005-1098(96)00141-0
  7. M. S. Sadabadia, and D. Peaucelleb, "From static output feedback to structured robust static output feedback: A survey," Annual Reviews in Control, Vol. 42, pp. 11-26, 2016. https://doi.org/10.1016/j.arcontrol.2016.09.014
  8. T. Iwasaki, R. E. Skelton, and J. C. Geromel, “Linear quadratic suboptimal control with static output feedback,” Systems & Control Letters, Vol. 23, No. 6, pp. 421-430, Dec. 1994. https://doi.org/10.1016/0167-6911(94)90096-5
  9. J. V. Burke, D. Henrion, A. S. Lewis, and M. L. Overton, “Stabilization via Nonsmooth, Nonconvex Optimization,” IEEE Transaction on Automatic Control, Vol. 51, No. 11, pp. 1760-1769, Nov. 2006. https://doi.org/10.1109/TAC.2006.884944
  10. J. Fiala, M. Kocvara, M. Stingl, "PENLAB: A MATLAB solver for nonlinear semidefinite optimization," [Internet]. Available: https://arxiv.org/pdf/1311.5240.
  11. F. Palacios-Quinonero, J. Rubio-Massegu, J. M. Rossell, and, H. R. Karimi, “Recent advances in static output-feedback controller design with applications to vibration control of large structures,” Modeling Identification and Control, Vol. 35, No. 3, pp. 169-190, Mar. 2014. https://doi.org/10.4173/mic.2014.3.4
  12. A. I. Zecevic, and D. D. Siljak, “Control design with arbitrary information structure constraints,” Automatica, Vol. 44, No. 10, pp. 2642-2647, Oct. 2008. https://doi.org/10.1016/j.automatica.2008.02.029
  13. L. El Ghaoui, and V. Balakrishnan, "Synthesis of fixed-structure controllers via numerical optimization," in Proceeding of the 33rd IEEE Conference on Decision and Control, Lake Buena Vista: FL, pp. 2678-2683, Dec. 1994.
  14. T. Iwasaki, “The dual iteration for fixed-order control,” IEEE Transaction on Automatic Control, Vol. 44, No. 4, pp. 783-788, Apr. 1999. https://doi.org/10.1109/9.754818
  15. I. Masubuchi, A. Ohara, and N. Suda, “LMI-based controller synthesis: A unified formulation and solution,” International Journal of Robust and Nonlinear Control, Vol. 8, No. 8, pp. 669-686, July 1998. https://doi.org/10.1002/(SICI)1099-1239(19980715)8:8<669::AID-RNC337>3.0.CO;2-W
  16. V. L. Syrmos, C. Abdallah, P. Dorato, "Static Output Feedback: A Survey," in Proceeding of Decision and Control, Lake Buena Vista: FL Dec. 1994.
  17. R. Findeisen, L. Imsland, F. Allgower, and B. A. Foss, “State and Output Feedback Nonlinear Model Predictive Control: An Overview,” European Journal of Control, Vol. 9, No. 2-3, pp. 190-206, 2003. https://doi.org/10.3166/ejc.9.190-206
  18. J. Xu, Output Feedback Control of Discrete-time LTI Systems: Scaling LMI Approaches, in Discrete Time Systems, IntechOpen, Ch, 9. pp. 141-159, 2011.
  19. V. Veseley, “Static output feedback controller design,” Kybernetika, Vol. 37, No. 2, pp. 205-221, Feb. 2001.
  20. G. Garcia, B. Pradin, and F. Zeng, “Stabilization of Discrete Time Linear Systems by Static Output Feedback,” IEEE Transaction on Automatic Control, Vol. 46, No. 12, pp. 1954-1958, Dec. 2001. https://doi.org/10.1109/9.975499
  21. C.A.R. Crusius, and A. Trofino, “Sufficient LMI Conditions for Output Feedback Control Problems,” IEEE Transaction on Automatic Control, Vol. 44, No. 5, pp. 1053 -1057, May 1999. https://doi.org/10.1109/9.763227
  22. G. I. Bara and M. Boutayeb, "Static Output Feedback Stabilization With $H^{\infty}$ Performance for Linear Discrete-Time Systems," IEEE Transaction on Automatic Control, Vol. 50, No. 20, pp. 250-254, Feb. 2005. https://doi.org/10.1109/TAC.2004.841922
  23. J. Rubio-Massegu, J. M. Rossella, H. R. Karimib, and F. Palacios-Quinoneroa, “Static output feedback control under information structure constraints,” Automatica, Vol. 49, No. 1, pp. 313-316, Jan. 2013. https://doi.org/10.1016/j.automatica.2012.10.012
  24. A.I. Zecevic, and D.D. Siljak, “Design of robust static output feedback for large-scale systems,” IEEE Transaction on Automatic Control, Vol. 49, No. 11, pp. 2040-2044, Nov. 2004. https://doi.org/10.1109/TAC.2004.837542
  25. S. J. Boyce, The Distance to Uncontrollability via Linear Matrix Inequalities, M.S. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, 2010.
  26. A. Tveit. On the complexity of matrix inversion, Department of Computer and Information Science, Norwegian University of Science and Technology, Trondheim, Norway, Technical report, 2003.
  27. K. Morris, "Iterative Solution of Algebraic Riccati Equations using a Modified Newton-Kleinman Method," in Proceeding of Mathematical Theory of Networks and Systems, Leuven: Belgium, pp. 1-15, July 2004.