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Response Characteristics of Aeroelastic Systems Using Robust Controller
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ABSTRACT

This paper presents a robust aeroelastic control methodology of a two dimensional flapped wing

system exposed to an incompressible flow field. A

robust controller is designed using a linear matrix

inequality (LMI) approach for the multiobjective synthesis. The design objectives are to achieve a mix

of H. performance and H: performance satisfying

constraints on the closed loop pole locations in the

presence of model uncertainties. Numerical examples are presented to demonstrate the effectiveness of

LMI approach in damping out the aeroelastic response of 3-DOF flapped wing system.
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1. Introduction

The next generation of combat aircraft is likely
to operate in more severe environmental conditions
that This implies that such an
aircraft, in addition to gust,

in the past.
will be exposed,

among others, to blast, fuel explosion, and sonic
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2 Under such conditions, even if the
flight speed of the aircraft is below the flutter

boom pulses.

speed, the wing structure will be subjected to
large oscillations that can result in its failure by
fatigue. Moreover, in some special events,
occurring during the operational life of the aircraft
such as escape maneuvers, significant decays of
the Aflutter
consequences for the further evolution of the
All the
necessity of the implementation of a robust control
to fulfill

objectives: a) {o enhance the subcritical aeroelastic

speed can occur, with dramatic

aircraft. these facts fully underline

capability enabling one two basic

response, in the sense of suppressing the wing
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oscillations in the shortest possible time even
though model uncertainty exists, and b) to extend

flutter
instability and so, contributing to a significant

the flight envelop by suppressing the

increase of the allowable flight speed. With this in
mind, in this paper the robust aeroelastic control
of a 3-DOF flapped wing system exposed to an
incompressible flow field will be investigated. In
this context, multiobjective state feedback control
law implementing mixed He/H; control strategy
with  pole placement constraint will be
implemented, and some of its performances will be

put info evidence.

2. Configuration of the 3-DOF Flapped
Wing Model
Figure 1 presents the typical wing-flap that is
considered in the present aeroelastic analysis. The
three degrees of freedom associated with the airfoil
appear clearly from Fig.1l. The pitching and
plunging displacements are restrained by a pair of
springs attached to the elastic axis (EA) with
spring constants K, and K., respectively. The

control flap is located at the trailing edge. A

torsional flap spring of constant Kﬁ is also
attached at the hinge axis: & denotes the plunge
displacement (positive downward), e is the pitch
angle measured from the horizontal at the elastic
axis of the airfoil (positive nose-up) and £ is the

flap deflection measured from the control flap

hinge (positive flap down).

b b

Fig.1 Typical flapped wing section

3. Governing Equation of the System
In matrix form the aeroelastic governing
equations of the 3-DOF flapped wing system can

. (34).
be written as™"':

My (1) +Ky(r) =-L()-L, () +L, )+ L () 1)

where —L(), =L (), L,(®) and L.(®) represent
the unsteady aerodynamic, gust, blast and control
loads, respectively. In Eq. (1), the column vector
of plunging/pitching/flapping  displacement is

defined as

h T
¥ = [% a(r) ﬁ(r)]

2

while
bm S, Sg
M=|bS, 1, I/3 +ch,3
bS, I, +bcS, 1, (3)
bK, O 0
K= 0 K, O
0 0 K 5 (4)
denote the mass and stiffness matrices,
respectively.

The second order aeroelastic governing egquation
can be cast in a first order state-space form as:

X(t) = Ax(0) + Bu(1) + Gw (1) (5)

Here A is the aerodynamic matrix, see Ref. 2.
The state vector is given by

x(t)=[h/b & B hib a B B, B, A Az:lr (6)

where B,,B,,A and A4, denote aerodynamic lag
states: u(t) is control input W(#) is an external
time-dependent

disturbance represented by a

L (5) .
external excitation, such as blast™, sonic-boom or
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step  pressure  pulse, efc: G is the
disturbance-input matrix, while B is the control

input matrix that is given by

7

B:i[(M'[O of)ooo0000 o]
1 (7)
The aerodynamic load vector appearing in Eq.

(1) is expressed in terms of its components as
L) =[Le) M@ T@] )

where L(t), M(t) and T(t) denote, respectively,
the aerodynamic lift (measurement positive in the
upward direction), the pitching moment about the
one-quarter chord of the airfoil (positive nose-
down) and theflap torque applied to the flap
hinge.

The second terms in the Eq. (1) are due to the
gust. In this respect. for the gust loading we

(2)
have

L) =[Ly0) M,60) T,e0] <9>
where

1o w,
Ly®)=2pV bf 1,40t -0)-tdo

(10)
__1 2,2 (* Wg
M (0= pV?h L)IMG(t—o)VdG i
I w,
T .(0)==pV?b*| L .(t-0)—<do
w=5P Jy Yy (12)

herein, wg is the gust vertical velocity, while Iie,
Iuc and Ir¢ are the related impulse functions. For

the present case of the incompressible flow, we
have'™:

lo=4ny, 1,,=1,(112+x,1/b), I,,=0
(13-15)

where ¥ is the Kiissner's function, approximated
by (1.2):

y()=1-0.5¢ *'" -0.5¢" (16)

rol

4. Multiobjective State Feedback Control
Methodology

In many control problems, the design

specifications are based on a mix of performance

and robustness objectives expressed both in the

These

satisfied with a

time and frequency domains. various

objectives are rarely single

synthesis, In this sense, through multiobjective
of control
objectives(m. Multiobjective robust design pertain to
the so-called “mixed H./H, problem”, which
robust stability and
state-feedback and output-

feedback cases had been studied in some papers.m

control, we can get a number

corresponds  to nominal

performance  for

In summation, multiobjective design allows for
more flexible and accurate specification of the
desirable closed-loop behavior.

In this paper, state-feedback
control methodology applied in the wing section is

multiobjective

implemented.

4.1 H. Performance

The basic configuration of the state-feedback
control structure is shown in Fig., 2. A linear time
invariant (LTI) system is described by the state
equations as follows"™
x(t) = Ax(t)+ B, w(t) + B,u(t)
2. (0 =Cx(t)+ D w(t)+D,u(r) (17)

where x(#) is the state, u(¢) is the control input,

Zoo

P(s)

> Z,

K

Fig. 2 Standard H-/H; state-feedback structure
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w(t) is the exogenous input and 2.(f) is the [ Y C2Q2+D22L}>O
T T °
regulated output. The constraint [I°w= L <Y can Q.C; +LDy, Q. (20)
be interpreted as a disturbance rejection
where L =KQ,

performance and robust stability of the closed loop
system.

By using H. control, a given constant ¥ >0,
the system (17) could be stabilizable with

disturbance attenuation 7 if there exists a

state-feedback matrix Ke R™such that the
following LMI conditions are satisfied.

AQ +QA'+BL+L'B] B, QC +LD],
B -1 D, [0
CQ.+D,L D, -1
Q. >0

where L=KQ, .

4.2 H; Performance
A state-feedback control system for H, control
problem is represented as

x(1) = Ax(?) + B, w(?) + B,u(?)
z,(t) = C,x(t) + D, w(t) + D,,u(t) (19)

The H; state feedback control problem is fo
find a control gain K that stabilizes system

internally and minimizes the H2 norm of the

transfer matrix Twzz from Wto %2 And recall

TW

2 T
that " 2 =trace(C;,Q.Cor) where Q. is the

solution  of  the

Lyapunov  equation and

controllability Gramian,

[.

whenever the symmetric matrices Q, and Y

satisfy

AQ,+Q,A" +B,L+L'B] B,
T <0,
B -1

i Z = trace(C,,Q,CL,) < trace(C,,Q,Cy,)" < trace(Y)

4.3 Regional Pole Constraints

It is known that the ftransient response of a
linear system is related to the locations of its
poles. Pole assignment in convex regions of the

left-half plane can also expressed as LMl
constraints on the Lyapunov matrix Q. Regions of
interest include e-stability regions Re<—-a

vertical strips, disks, conic sector, etc. Another
interesting region for control purpose is the set

S(a,r,0) of complex numbers x+yj such that

x<—a <0, fx+ jy[ <r, tangx < —ly‘
2 (21)
as shown in Fig.3 This is in turn bounds the
maximum overshoot, the frequency of oscillatory
modes, delay time, rise time and settling time.

M5 (A,Q)<0, Q>0 (22)

The matrix A is R-stable if and only if there

(9)

exists a symmetric matrix Q. It can be

summarized as for closed-loop system

M‘)((AC[9Q9()<O’ QER > (23)

ad

o

\j

\/

Fig. 3 Pole placement region
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For a prescribed closed-loop H-. performance
r>0. mixed Heo/H;
consists of finding a state-feedback gain K that

our suboptimal problem

» Places the closed-loop poles in LMI stable

region R
T ” <
» Guarantees the H_ performance [I"»= [l Y
* Minimizes the H: performance w2y |y

subjected to above two constraints.

But our goal is to minimize the Hy norm of

wa,

K that

From above

> over all state-feedback gains

enforce H. and pole constraints.

discussion, this is equivalent to minimizing

trace(Y) oyer all matrices to Q-»Q2>Qs>Y and

L satisfying (18), (20). and (23).

To Implement multiobjective synthesis, we
impose the constraint
Q=Q.=Q,=Q4 (24)

The solution can be sought by substituting (24)
into (18), (20), and (23). It can be computed as
the following LMI
optimization problem. In other words, it make us
minimize trace(Y) over Q=Q >0 y=Y"
and L subject to the LMI constraints.

Assume that (25) is and let
(Q.Y,L.,7Y) be an optimal solution of this
minimization problem. Then the corresponding
state-feedback

K =L(@Q)"

global minimum of the

feasible

control gain is given by

and this gain guarantees H.,
performance is less than )/':. places the closed-loop
poles in R, and yields on H, performance that

does not exceed +trace(Y ) From the trade-off

H, and H, performance, we

curve between
select best compromise state-feedback control gain

K.

[AQ+QA”+B,L+I'B. B, QC.+LD]
B -1 D
CIQ+D12L Du -1
Y C2Q+D22L}>O
|QC, +LD;, Q ’
[#,Q+B,(AQ+B,L)+B,(QA" +L'B})]

<0, Q.,>0

<0,

1<k.f<m

(25)

Model Uncertainty

The notion of uncertain dynamical system s
central to robust control theory. The gap between
such models and the true physical system is called
the model
stem from the imperfect knowledge of the system,

uncertainty, Generally, uncertainties
or the alteration of the physical parameter values
due to changes in operation conditions. There are
two major classes of uncertainty(m. In our paper,
which originates from

parameter uncertainty,

imperfect knowledge of the physical parameter

values or from variations of these parameters
during operation is considered as £ 5% range of
mass and stiffness variations. These uncertainties
are represented by uncertain state-space models.

. . . )
Uncertain state-space model is described as

Ex =Ax+Bu

y=Cx+Du (26)
where the state-space matrices A, f}, C,D,E
depend on uncertain and/or  time-varying

parameters or vary in some bounded sets of the
The dynamic equations of
motions often involve uncertain or time-varying

spaces of matrices.

coefficients, When the system is linear, it naturally
gives rise to parameter-dependent models of the
form

E(p)x=A(p)x+B(p)u

y=C(p)x+D(p)u 27

where AC),..E() are known functions of some
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parameter vector P=(P;,»P.). In our case,

A(p) and E(p) are defined as below, respectively.

And parameter vector is defined as P=(m,K,) .
In other words,

AP)=A,+mA_ +K,A,
Ep)=E,+mE_+K,E, (28)

The parameter uncertainty range can be
described as a box in the parameter space. This
corresponds to cases where each uncertain or

time-varying parameter p; ranges between two

empirically determined extremal values Piand i

rie[p.7] (29)

Here we do not consider time-varying

parameter, ie. the rate of variation.
5. Discussion of Results

The geometrical and physical characteristics of
the 3-DOF flapped wing system to be used in the
present numerical simulations are presented in
Table 1. The flutter speed for this model is Vr
=139.3m/s. In order to validate the result present
in this paper a comparison is done using the
(10), for which the
Ve =2713m/s. The

parameters shown in Ref.
calculated flutter speed is
critical value of the flutter speed is obtained
herein via the solution of both the complex
eigenvalue problem and from the subcritical

aeroelastic response analysis and an excellent

agreement with Ref. (11) is reached.

Table 1 Geometrical parameters of wing model

Parameter Value
b =0.3048(m) ¢c=10
X, =03 m=1287(ke/m’)

1, =025x269(kg/m’/m)
1, =025x06727(kg/m"/m)

K, =02x100'7, (kg-m/s")
K, =02x300'1, (kg m/s")

K, =02x50'm (kg m/s) S, =0.3x8.946(kg)

p =1.225(kg/m") S, = 0.3x1471(kg)

Fig. 4 shows us trade-off relation between Hw
performance and H: performance. By inspection of

this curve, the state-feedback gain obtained for ¥
=0.03 vields the best compromise between the He
and H objectives.

Singular value plots of nominal and uncertain
in Fig.5(a) and (b),
respectively, We can find three peak values In

model are presented
both nominal and uncertain model. For a square
state matrix system, the peak value frequency is
referred to the natural frequency of the system.
Actually,
frequency correspond to the peak value frequency

the plunging, pitching and flapping

in singular value plots. Fig. 5(a) shows the control
performance of the nominal model in frequency
domain. Specially, the second peak value of
pitching frequency well decreased. Fig. 5(b) shows
the control performance of the four uncertain
models which have different variations in mass
and stiffness. We can see the almost similar
controlled response in each uncertain model. Only
one uncontrolled uncertain model, possessing the
least both mass and stiffness, is plotted in Fig.
5(b). Also that case has the largest peak value in
singular value plot. The largest singular value plot
refers to the He norm of the transfer matrix. In
both nominal and uncertain model case, the largest
singular value is well decreased at pitching
frequency.
In case parameter variation exist in the mass
7

6.5 \

6f \ _
L % uncertain model i
/Om'nal model

002 003 0.04 0.05 006 007 0.08 0.09 a1
H-infinity performance

L
[LIL

H?2 performance
~
"

I c
ON o w s

=

w

Fig.4 Trade-off curve between Heo and H:

performance
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p— — p——

and stiffness of system, the pitching and plunging
displacement exposed to impulse disturbance are
presented in Fig. 6 and 7. The upper plot of Fig.
6 shows uncontrolled response for the uncertain
model, which is implemented by one set of four
extremal values and the same controlled case. Fig.
7 shows the plunging response in comparison with
Fig. 6. In both pitching and plunging case, we can

make certain that controller works good
performance, including nominal case, in spite of
the 4 extremal uncertainty values.

We have concerned previous results at

subcritical flight speed region. The response to
impulse disturbance at flutter speed is shown in
Fig. 8. Like our expectation, the large amplitude
occurs and response will be unstable with one set
of extremal values. Once the controller works, the
in short times remarkably.

amplitude decrease

Singuler Values (dB)

z
10
Freguency (radfsec)

(a) Nominal model

10"

20
a0}
P
e
g o
P
=2
S eofe--
5
= W
(=2}
g
A -100 |-
-110
A0 feeee-
-130 1 i
10° 10" 107 10’
Frequency {radisec)
(b) Uncertain model
Fig.5 (a) and (b) singular value plot of

nominal and uncertain model

Pitching

S—

uncontrofled uncertain model
m1=0.95m, k1=0 95k

(i
‘l‘ I

—

controlled uncertain model
m1=0 95m, k1=0 95k

25 3 35 4 45 5

Time (sec)

Pitching

m1=095m, k1=0 95k
m2=105m, k1=0 85k
m1=0 85m, k2=1 05k
m2=1.05m, k2=1 05k

l
i
4»

AR

Fig. 6 Pitching

nominal model 4
1 IS 2" 2'5 ?Is 3'5 4A 4'5 5
Time (sec)
displacement  with  impulse

disturbance

Plunging

uncontrolled uncertain model
1=0 95m, k1=0 95k

controlled uncertain mdoel

Wﬂﬂ 0 95m, k1=0 95k J

. A L L §

15 2 25 3
Time {sec)

o
9
@

Plunging
g o P

- s

—— m1=095m, k1=0 95k {{
—— m2=105m. k1=0 95k
m1=0 95m, k1=1 05k

—— m2=105m, k1=1 05k

nominal model

n . n

2 25 3

o T fssc) 3s 4 45 5

Fig.7 Plunging displacement with impulse
disturbance
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Fig.8 Robustness to model uncertainty at flutter
speed

6. Conclusions

Results related to the aeroelastic response and
robust control of 3-DOF flapped wing systems
operating in an incompressible ﬂight speed and
exposed to impulse disturbance are presented. Also
an integrated robust controller design procedure for
aeroelastic system with uncertainties due to mass
and stiffness variation is addressed. The design
procedure involves the solution of a multiobjective
different
constraints on the controller for aeroelastic system.

optimization problem involving three
Admittedly with some degree of conservatism,
these results offer numerically tractable means of
performing rmultiobjective controller design.
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