• Title/Summary/Keyword: 상승 $CO_2$

Search Result 697, Processing Time 0.052 seconds

Effect of Elevated CO2 Concentration and Temperature on the Growth and Ecophysiological Responses of Ginseng (Panax ginseng C. A. Meyer) (CO2농도와 온도증가에 따른 인삼의 생육 및 생리.생태학적 반응 연구)

  • Lee, Kyoung-Mi;Kim, Hae-Ran;Lim, Hoon;You, Young-Han
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.2
    • /
    • pp.106-112
    • /
    • 2012
  • In order to understand the growth and ecophy -siological response of ginseng to global warming condition, we cultivated one and two year ginseng seedlings in control (ambient $CO_2$ + ambient temperature) and global warming treatment (elevated $CO_2$ + elevated temperature) from March 2010 to July 2011. Shoot appearance and initiation of flowering were advanced by 3-4 days in global warming treatment than in control. However, timing of fruit setting and seed ripeness was similar in both control and global warming treatment. Shoot length was longer in global warming treatment than in control, and also the number of leaves was much in global warming treatment. Fresh root weight was not different between control and global warming treatment. Photosynthetic rate was higher in global warming treatment than at control. Photosynthetic rate and transpiration rate were higher in two year seedlings than in one year seedlings at control, but was not different between seedling age of ginseng in global warming treatment. Water use efficiency was higher in one year seedlings than two year seedlings at control and global warming treatment. These results demonstrated that Korean ginseng more or less positively responds to global warming situation.

Influence of Elevated CO2 and Air Temperature on Photosynthesis, Shoot Growth, and Fruit Quality of 'Fuji'/M.9 Apple Tree (CO2 및 기온 상승이 '후지'/M.9 사과나무의 광합성, 신초생장 및 과실품질에 미치는 영향)

  • Kweon, Hun-Joong;Sagong, Dong-Hoon;Park, Moo-Yong;Song, Yang-Yik;Chung, Kyeong-Ho;Nam, Jong-Chul;Han, Jeom-Hwa;Do, Gyung-Ran
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.4
    • /
    • pp.245-263
    • /
    • 2013
  • This study was conducted to find out the influence of elevated atmospheric $CO_2$ concentrations and air temperature on photosynthesis and fruit quality of 'Fuji'/M.9 apple trees and to investigate these to the effects of climate change during the last four years (2009-2012). The treatments employed were: 'Ambient' (ambient temperature + ambient $CO_2$ concentration); 'High $CO_2$' (ambient temperature + elevated $CO_2$ concentration); 'High Temp'. (elevated temperature + ambient $CO_2$ concentration); and 'High $CO_2$ + High Temp'. (elevated temperature + elevated $CO_2$ concentration). The elevated temperature plots were maintained at $4^{\circ}C$ higher than ambient air temperature, while the elevated $CO_2$ plots were maintained at 700 ${\mu}mol{\cdot}mol^{-1}$. Annual treatment period was applied from end of April to beginning of November for four years. Results showed that elevated $CO_2$ decreased stomatal conductance and leaf SPAD value, but increased photosynthetic rate, intercellular $CO_2$ concentration (Ci), and starch content of mesophyll tissue. In the vegetative growth, elevated temperature increased total number of shoot and total shoot growth per tree, but elevated $CO_2$ decreased average shoot length. In the fruit quality, elevated $CO_2$ increased soluble solid content, fruit red color, and ethylene production. In conclusion, elevated $CO_2$ increased photosynthetic rate of apples during the early growth, but effect of increased photosynthetic rate due to elevated $CO_2$ was decreased during latter growth stage. Elevated temperature, on the other hand, tended to decrease photosynthetic rate of apples during the early growth, but that tended to increase during latter growth stage. Both elevated $CO_2$ and temperature tended to decrease the degree of decreased photosynthetic rate due to each factor.

Effects of elevated CO2 concentration and increased temperature on the growth and crop yield of rice (Oryza sativa) cultivars in Korea -cv. Odaebyeo and cv. Saechucheongbyeo- (CO2농도와 온도 상승이 한국의 주요 재배 벼품종의 생육과 생산량에 미치는 영향 -오대벼와 새추청벼-)

  • Lee, Eung Pill;Jang, Rae Ha;Cho, Kyu Tae;You, Young Han
    • Journal of Wetlands Research
    • /
    • v.16 no.4
    • /
    • pp.363-370
    • /
    • 2014
  • We grew seedlings of Saechucheongbyeo and Odaebyeo of rice cultivars that are cultivated dominantly in the northern and middle regions of Korea under control(ambient condition), ambient $CO_2$ concentration+elevated temperature, and elevated $CO_2$ concentration+elevated temperature in order to study how growth responses and crop yield of major rice of Korea change as the global warming proceeds and compared the results. Aboveground biomass, belowground biomass, total biomass, and panicles weight per individual and ripended grain rate of cv. Saechucheongbyeo were the highest under control, but those of cv. Odaebyeo were the highest under elevated $CO_2$ concentration+elevated temperature. There was no difference in the number of panicles per individual of cv. Saechucheongbyeo and cv. Odaebyeo in these experiments. There was no difference in the number of grains per panicle of cv. Saechucheongbyeo among three environmental gradients, but that of cv. Odaebyeo was the highest under elevated $CO_2$ concentration+elevated temperature. Weight of a grain of cv. Saechucheongbyeo was highest under elevated $CO_2$ concentration+elevated temperature, but that of cv. Odaebyeo was the higher under ambient $CO_2$ concentration+elevated temperature and elevated $CO_2$ concentration+elevated temperature. Thus, if global warming continues in Korea, selection of rice cultivation varieties must be chosen carefully for commendation.

Changes of Plant Biomass and Proximate Composition of Radish Exposed to Elevated Temperature and $CO_2$ Concentration (온도 및 $CO_2$ 농도 상승에 따른 무의 건물생산 및 일반 영양성분 변화)

  • Seo, Tae-Cheol;Jang, Yoon-Ah;Nam, Chun-Woo;Oh, Sang-Seok;Um, Yeong-Cheol;Han, Jeom-Hwa
    • Journal of Bio-Environment Control
    • /
    • v.21 no.1
    • /
    • pp.20-27
    • /
    • 2012
  • This experiment was conducted to evaluate the long-term effect of the elevated temperature and $CO_2$ concentration on the plant biomass, C/N ratio, and proximate composition of radish. Elevated temperature by 2~2.5 higher than ambient temperature decreased plant biomass by 39% in the spring and 26% in the autumn, respectively. Elevated $CO_2$ concentration by $220{\sim}230{\mu}mol\;mol^{-1}$ higher than ambient $CO_2$ concentration increased plant biomass especially in root. The elevated $CO_2$ concentration, however, could not compensate for the negative effect of elevated temperature on the plant biomass entirely. Elevated temperature increased T/R ratio by 86% in the spring and 60% in the autumn, respectively. Elevated temperature lowered C/N ratio and raised crude protein, crude fat, and ash content in radish root. On the contrary, elevated $CO_2$ concentration raised C/N ratio and lowered the crude protein, crude fiber, and ash contents. These results indicate that climate change affect the biomass yield and internal materials of radish depending on the extent of temperature and $CO_2$ concentration rise in the future.

Effects of the Elevated Temperature and Carbon Dioxide on Vine Growth and Fruit Quality of 'Campbell Early' Grapevines (Vitis labruscana) (온도와 이산화탄소의 상승처리가 포도 '캠벨얼리'의 수체생육과 과실품질에 미치는 영향)

  • Son, In Chang;Han, Jeom-Haw;Cho, Jung Gun;Kim, Seung Heui;Chang, Eun-Ha;Oh, Sung Il;Moon, Kyung-Hwan;Choi, In-Myung
    • Horticultural Science & Technology
    • /
    • v.32 no.6
    • /
    • pp.781-787
    • /
    • 2014
  • The effects of elevated temperature and $CO_2$ concentration on vine growth and characteristics of fruits of three-year-old 'Campbell Early' grapevine were investigated. The treatment groups consisted of a control group (ambient temperature and $390{\mu}L{\cdot}L^{-1}\;CO_2$), an elevated temperature group (ambient temperature + $4.0^{\circ}C$ and $390{\mu}L{\cdot}L^{-1}\;CO_2$), an elevated $CO_2$ group (ambient temperature and $700{\mu}L{\cdot}L^{-1}\;CO_2$), and an elevated $CO_2$/temperature group (ambient temperature + $4.0^{\circ}C$ and $700{\mu}L{\cdot}L^{-1}\;CO_2$). The average shoot length was 312.6 cm in the elevated $CO_2$/temperature group, which was higher than the other groups; with 206.2 cm in the control group and 255.6 cm and 224.8 cm in the elevated temperature group and elevated $CO_2$ group respectively. However, the shoot diameter showed a tendency of decreasing in the elevated temperature and elevated $CO_2$/temperature groups. The equatorial diameter of berries was increased in the higher carbon dioxide concentration, and the soluble solid content was the highest in the elevated $CO_2$ group, with $14.6^{\circ}Brix$ among all treatment groups and the lowest in the elevated temperature group ($13.9^{\circ}Brix$). The harvest date was approximately 11 d earlier in the elevated $CO_2$/temperature group and 4 to 2 days earlier in the elevated $CO_2$ group and elevated temperature group, respectively. Regarding the rate of photosynthesis and transpiration during the growth period, higher photosynthetic rates were observed in the elevated $CO_2$ group and the elevated $CO_2$/temperature group during the early stage of growth; however the photosynthetic rate was reduced dramatically in summer, which was contrary to transpiration.

Ecophysiology of Photosynthesis 3: Photosynthetic responses to elevated atmospheric $CO_2$ concentration and temperature (광합성의 생리생태 (3) - $CO_2$ 농도와 온도 상승에 대한 광합성 반응 -)

  • 김판기;이은주
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.4
    • /
    • pp.238-243
    • /
    • 2001
  • 대기중의 $CO_2$ 농도 상승은 지구온난화의 주원인이 되고 있는데, 1960년대 전반에 320$\mu$㏖ㆍ㏖$^{-1}$ 이하 였던 $CO_2$농도가 화석연료의 사용량 증가, 삼림 벌채 등의 영향으로 근년에는 360 $\mu$㏖ㆍ㏖$^{-1}$ 이상으로 상승하였다(Bagastow et al., 1985). 이러한 추세로 대기중의 $CO_2$ 농도가 증가한다면 21세기 말에는 $CO_2$ 농도가 현재의 약 2배로 상승되고, 2~6$^{\circ}C$의 기온 상승이 예측되어 (Burroughs, 2001) 지구차원의 환경문제로 대두되고 있다.(중략)

  • PDF

Effect of Phosphorus Stress on Photosynthesis and Nitrogen Fixation of Soybean Plant under $CO_2$ Enrichment (대기 $CO_2$ 상승시 인산공급이 식물체의 광합성 및 질소고정에 미치는 영향)

  • Sa, Tong-Min
    • Applied Biological Chemistry
    • /
    • v.40 no.2
    • /
    • pp.134-138
    • /
    • 1997
  • The objective of this study was to examine the effect of phosphorus deficiency on nitrogen fixation and photosynthesis of nitrogen fixing soybean plant under $CO_2$ enrichment condition. The soybean plants(Glycine max [L.] Merr.) inoculated with Bradyrhizobium japonicum MN 110 were grown with P-stressed(0.05 mM-P) and control(1 mM-P) treatment under control$(400\;{\mu}l/L\;CO_2)$ and enrichment$(800\;{\mu}l/L\;CO_2)$ enviromental condition in the phytotron equipped with high density lamp$(1000\;{\mu}Em^{-2}S^{-1})$ and $28/22^{\circ}C$ temperature cycle for 35 days after transplanting(DAT). At 35 DAT, phosphorus deficiency decreased total dry mass by 64% in $CO_2$ enrichment condition, and 51% in control $CO_2$ condition. Total leaf area was reduced significantly by phosphorus deficiency in control and enriched $CO_2$ condition but specific leaf weight was increased by P deficiency. Phosphorus deficiency significantly reduced photosynthetic rate(carbon exchange rate) and internal $CO_2$ concentration in leaf in both $CO_2$ treatments, but the degree of stress was more severe under $CO_2$ enrichment condition than under control $CO_2$ environmental condition. In phosphorus sufficient plants, $CO_2$ enrichment increased nodule fresh weight and total nitrogenase activity(acetylene reduction) of nodule by 30% and 41% respectively, but specific nitrogenase activity of nodule and nodule fresh weight was not affected by $CO_2$ enrichment in phosphorus deficient plant at 35 DAT. Total nitrogen concentrations in stem, root and nodule tissue were significantly higher in phosphorus sufficient plant grown under $CO_2$ enrichment, but nitrogen concentration in leaf was reduced by 30% under $CO_2$ enrichment. These results indicate that increasing $CO_2$ concentration does not affect plant growth under phosphorus deficient condition and phosphorus stress might inhibit carbohydrate utilization in whole plant and that $CO_2$ enrichment could not increase nodule formation and functioning under phosphorus deficient conditions and phosphorus has more important roles in nodule growth and functioning under $CO_2$ enrichment environments than under ambient condition.

  • PDF

Effect of Elevated Carbon Dioxide Concentration and Temperature on Yield and Fruit Characteristics of Tomato (Lycopersicon esculentum Mill.) (이산화탄소 및 온도 상승이 토마토 수량 및 과실특성에 미치는 영향)

  • Lee, In-Bog;Kang, Seok-Beom;Park, Jin-Myeon
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.4
    • /
    • pp.428-434
    • /
    • 2008
  • The objective of this study is to investigate the effect of the level of $CO_2$ (370 and $650{\mu}mol\;mol^{-1}$) and temperature (ambient and ambient+$5^{\circ}C$) on tomato growth and fruit characteristics as affected by the application rate of N-fertilizer (68 and $204\;N\;kg\;ha^{-1}$), for the purpose of evaluating the influence of elevated $CO_2$ and temperature on tomato crop. The elevated atmospheric $CO_2$ and temperature increased the plant height and stem diameter for tomato crop, while the differences among the nitrogen(N) application rates were not significantly different. Under the elevated $CO_2$, temperature, and a higher N application rate, the biomass of aerial part increased. The fruit yield showed the same result as the biomass except for the elevated temperature. The elevated temperature made the size of fruit move toward the small, but the elevated $CO_2$ and the application of N-fertilizer were vice versa. The sugar content and pH of fruit juice were affected by nitrogen application rate, but not by the elevated $CO_2$ and temperature. These results showed that both the elevated $CO_2$ and temperature stimulated the vegetative growth of aerial parts for tomato, but each effects on the yield of fruit showed an opposite result between the elevated temperature and $CO_2$. In conclusion, the elevated $CO_2$ increased tomato yield and the ratio of large size of fruit, but the elevated temperature did not. Therefore, to secure the productivity of tomato as nowadays in future environment, it will need to develop new breeder as high temperature-tolerable tomato species or new type of cropping systems.

Effects of Elevated CO2 and Temperate on the Growth of Endangered Species, Cicuta virosa L. in Korea (CO2농도와 온도 상승이 한국멸종위기식물 독미나리의 생장에 주는 영향)

  • Park, Jae Hoon;Hong, Yong Sik;Kim, Hae Ran;Jeong, Jung Kyu;Jeong, Heon Mo;You, Young Han
    • Journal of Wetlands Research
    • /
    • v.16 no.1
    • /
    • pp.11-18
    • /
    • 2014
  • The effect of elevated $CO_2$ and temperature on ecological characteristics of Cicuta virosa L., the endangered plant were examined under ambient $CO_2$+ambient temperature(AC-AT), ambient $CO_2$+elevated temperature(AC-ET) and elevated $CO_2$+elevated temperature for two years. Shoot length and the number of umbels were not different in three environmental gradients. The number of tillers was high in the order of EC-ET, AC-ET and AC-AT. The number of compound umbel was the lowest in the EC-ET. Fruit set rate was the highest in the AC-AT. These results mean that unsexual propagation of C. virosa may increase by promoting growth of tillers, rather than seed production under future global warming. This population growth study will be used as the important data for the research of Korean endangered species.

Effects of Elevated CO2 Concentration and Temperature on Physiological Characters of Liriodendron tulipifera (CO2농도 및 온도 상승이 백합나무의 생리적 특성에 미치는 영향)

  • Lee, Ha-Soo;Lee, Solji;Lee, Jae-Cheon;Kim, Ki Woo;Kim, Pan-Gi
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.3
    • /
    • pp.145-152
    • /
    • 2013
  • This study aimed to investigate the growth and physiological characters of Liriodendron tulipifera seedlings in responses to two different levels of elevated air temperature and $CO_2$ concentration. The seedlings were grown in environment-controlled growth chambers with two combinations of air temperature and $CO_2$ conditions: (1) $22^{\circ}C$ + ambient $CO_2$ $380{\mu}mol\;mol^{-1}$ and (2) $27^{\circ}C$ + $770{\mu}mol\;mol^{-1}$. Physiological characters such as growth, photosynthesis, and water use efficiency, were monitored for 85 days. The seedlings under the elevated treatment showed a greater amount of growth in tree height, compared with those under the control. Regarding the characteristics of assimilatory organs, the elevated treatment resulted in a greater amount of total leaf area, leaf unfolding, and dry weight per leaf area. No significant differences were found in photosynthesis capacity between the two treatments. The increase in water use efficiency with increased intercellular $CO_2$ partial pressure appeared overall lower in the seedling under the elevated treatment, compared with those under the control. The total leaf area of the seedlings under the elevated treatment was larger than that under the control, indicating a higher amount of photosynthesis. In addition, an increase of root growth was noted under the elevated treatment. A resistance mechanism of water stress may be attributed to a higher amount of organ growth as well as the tree height under the elevated treatment than the control.