Changes of Plant Biomass and Proximate Composition of Radish Exposed to Elevated Temperature and $CO_2$ Concentration

온도 및 $CO_2$ 농도 상승에 따른 무의 건물생산 및 일반 영양성분 변화

  • Seo, Tae-Cheol (Vegetable Research Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Jang, Yoon-Ah (Vegetable Research Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Nam, Chun-Woo (Vegetable Research Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Oh, Sang-Seok (Vegetable Research Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Um, Yeong-Cheol (Vegetable Research Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Han, Jeom-Hwa (Fruit Research Division, National Institute of Horticultural and Herbal Science, RDA)
  • 서태철 (국립원예특작과학원 채소과) ;
  • 장윤아 (국립원예특작과학원 채소과) ;
  • 남춘우 (국립원예특작과학원 채소과) ;
  • 오상석 (국립원예특작과학원 채소과) ;
  • 엄영철 (국립원예특작과학원 채소과) ;
  • 한점화 (국립원예특작과학원 과수과)
  • Received : 2011.10.13
  • Accepted : 2012.02.03
  • Published : 2012.03.31

Abstract

This experiment was conducted to evaluate the long-term effect of the elevated temperature and $CO_2$ concentration on the plant biomass, C/N ratio, and proximate composition of radish. Elevated temperature by 2~2.5 higher than ambient temperature decreased plant biomass by 39% in the spring and 26% in the autumn, respectively. Elevated $CO_2$ concentration by $220{\sim}230{\mu}mol\;mol^{-1}$ higher than ambient $CO_2$ concentration increased plant biomass especially in root. The elevated $CO_2$ concentration, however, could not compensate for the negative effect of elevated temperature on the plant biomass entirely. Elevated temperature increased T/R ratio by 86% in the spring and 60% in the autumn, respectively. Elevated temperature lowered C/N ratio and raised crude protein, crude fat, and ash content in radish root. On the contrary, elevated $CO_2$ concentration raised C/N ratio and lowered the crude protein, crude fiber, and ash contents. These results indicate that climate change affect the biomass yield and internal materials of radish depending on the extent of temperature and $CO_2$ concentration rise in the future.

상승 온도와 상승 $CO_2$ 농도 처리가 무의 생장량, C/N율, 그리고 식품 일반 영양성분에 미치는 효과를 검토한 결과, 대기 온도보다 $2{\sim}2.5^{\circ}C$ 범위의 온도 상승은 무의 건물생산을 26~39% 범위의 감소를 가져오며, 대기 $CO_2$ 농도가 220~230ppm 상승함에 따라서 건물생산의 감소가 9~15% 범위로 어느 정도 줄어들지만, 온도 상승에 의한 감소 효과를 극복하지 못했다. 온도 상승은 무의 T/R율을 봄에는 86%, 가을에는 60% 증가시켰으며, C/N율을 낮추고, 조단백질, 조지방, 그리고 회분의 함량을 높이는 결과를 나타내었다. 반면에 상승 $CO_2$ 처리는 C/N율은 높이고 조단백질, 조섬유, 그리고 회분의 함량을 저하시키는 결과를 나타내었다. 따라서 앞으로 온도 상승과 $CO_2$ 농도 상승 정도에 따라 무의 건물생산, T/R율, C/N율, 그리고 일반 영양성분에 상당한 영향을 미칠 것으로 판단된다.

Keywords

References

  1. Ainsworth, E.A., A. Rogers, A.D.B. Leakey, L.E. Heady, Y. Gibon, M. Stitt, and U. Schurr. 2007. Does Elevated Atmospheric [$CO_2$] Alter Diurnal C Uptake and the Balance of C and N Metabolites in Growing and Fully Expanded Soybean Leaves? J. Expt. Bot. 58(3):579-591.
  2. Bae, H. and R. Sicher. 2004. Changes of Soluble Protein Expression and Leaf Metabolite Levels in Arabidopsis Thaliana Grown in Elevated Atmospheric Carbon Dioxide. Field Crops Res. 90:61-73. https://doi.org/10.1016/j.fcr.2004.07.005
  3. Bassirirad, H. 2000. Kinetics of Nutrient Uptake by Roots: Responses to Global Change. New Phytol. 147:155-169. https://doi.org/10.1046/j.1469-8137.2000.00682.x
  4. Choi, E.Y., T.C. Seo, S.G. Lee, I.H. Cho, and J. Stangoulis. 2011. Growth and Physiological Responses of Chinese Cabbage and Radish to Long-term Exposure to Elevated Carbon Dioxide and Temperature. Hort. Environ. Biotechnol. 52(4):376-386. https://doi.org/10.1007/s13580-011-0012-0
  5. Chu, C.C., J.S. Coleman, and H.A. Mooney. 1992. Controls of Biomass Partitioning between Roots and Shoots: Atmospheric $CO_2$ Enrichment and the Acquisition and Allocation of Carbon and Nitrogen in Wild Radish. Oecologia 89:580-587.
  6. FACT. 2010. Method of Forage Analysis. FACT. Suwon, Korea.
  7. Hartly, S.E., C.G. Jones, G.C. Couper, and T.H. Jones. 2000. Biosynthesis of Plant Phenolic Compounds in Elevated Atmospheric $CO_2$. Global Change Biol. 6:497-506. https://doi.org/10.1046/j.1365-2486.2000.00333.x
  8. Intergovernmental Panel on Climate Change (IPCC). 2007. Climate Change 2007: Synthesis Report. IPCC. Geneva. Switzerland.
  9. Kang, H.J., J.S. Lee, K.R. Ryu, and J.T. Lee. 2002. Chinese Cabbage Cultivation. R.D.A. Suwon. Korea.
  10. Karowe, D.N., D.D. Seimens, and T. Mitchell-olds. 1997. Species-specific Response of Glucosinolate Content to Elevated Atmosphere $CO_2$. J. Chem. Ecol. 23:2569-2582. https://doi.org/10.1023/B:JOEC.0000006667.81616.18
  11. Lee, I.B., J.H. Lim, H.L. Kim, and S.B. Kang. 2005. Survey of Growth Response of Pepper Under Global Warming. NHRI Annual Research Report. Suwon (CD version). pp. 37-46.
  12. Lee, J.W., S.Y. Kim, Y.A. Jang, J.H. Moon, and W.M. Lee. 2006. Growth Response and $CO_2$ Biomass of Chinese Cabbage and Radish Under High Temperature and $CO_2$ Concentration. J. Bio-Environ. Control 15:364-368.
  13. Lee, S.G., J.H. Moon, Y.H. Jang, W.M. Lee, I.H. Cho, S.Y. Kim, and K.D. Ko, 2009. Photosynthetic Characteristics and Cellular Tissue of Chinese Cabbage are Affected by Temperature and $CO_2$ Concentration. J. Bio-Environ. Control 18:148-152.
  14. Lim, M.S., K.Y. Shin, J.G. Woo, Y.S. Kwon, S.W. Jang, W.B. Kim, J.N. Lee, J.T. Lee, H.J. Kwon, J.T. Seo, J.H. Ahn, Y.G. Kang, Y.I. Ham, M. Kwon, and K.R. Ryu. 2000. Vegetable Cultivation Technique in Highland Area. Kwahakwonhae Press. Seoul. pp. 52-56.
  15. Mattson, W.J., R. Julkunen-Tittoo, and D.A. Herms. 2005. $CO_2$ Enrichment and Carbon Partitioning to Phenolics: Do Plant Responses Accord Better with the Protein Competition or the Growth-differentiation Balance Models? OIKOS 111:337-347. https://doi.org/10.1111/j.0030-1299.2005.13634.x
  16. Morison, J.I.L. and M.D. Morecroft. 2006. Plant Growth and Climate Change. Wiley-Blackwell, Blackwell Publishing Co. Ltd., London, U.K.
  17. Park, S.H., J.S. Lee, M.H. Seo, and J.S. Lee. 2002. Radish Cultivation, RDA, Suwon, Korea. pp. 39-40.
  18. Reddy, R.A., G.H. Rasineni, and A.S. Raghavendra. 2010. The Impact of Global Elevated $CO_2$ Concentration on Photosynthesis and Plant Productivity. Current Sci. 99:46-57.
  19. Rogers, H.H., A.P. Stephen, G.B. Runion, and R.J. Mitchell. 1996. Root to Shoot Ratio of Crops as Influenced by $CO_2$. Plant Soil 187:229-248.
  20. ScienceDaily, 2002. http://www.sciencedaily.com/releases/2002/12/021206075233.htm.
  21. Taub, D.R., B. Miller, and H. Allen. 2008. Effects of Elevated $CO_2$ on the Concentration of Food Crops: A Meta-analysis. Global Change Bio. 14:565-575. https://doi.org/10.1111/j.1365-2486.2007.01511.x
  22. Uprety, D.C., S. Sen, and N. Dwivedi. 2010. Rising Atmospheric Carbon Dioxide on Grain Quality. Physiol. Mol. Biol. Plants 16(3):215-227. https://doi.org/10.1007/s12298-010-0029-3
  23. Urbonaviciute, A., G. Samuoliene, and J. Sakalauskaite. 2006. The Effect of Elevated $CO_2$ Concentrations on Leaf Carbohydrate, Chlorophyll Contents and Photosynthesis in Radish. Polish J. Environ. Studies 15(6):921-925.
  24. Usuda, H. 2006. Effects of Elevated $CO_2$ on the Capacity for Photosynthesis of a Single Leaf and a Whole Plant, and on Growth in a Radish. Plant Cell Physiol. 47(2):262-269.
  25. Usuda, H. and K. Shimogawara. 1998. The Effects of Increased Atmospheric Carbon Dioxide on Growth, Carbohydrate, and Photosynthesis in Radish, Raphanus sativus L. Plant Cell Physiol. 39:1-7. https://doi.org/10.1093/oxfordjournals.pcp.a029280
  26. Prasad, P.V.V., L.H. Allen, Jr., and K.J. Boote. 2005. Crop Responses to Elevated Carbon Dioxide and Interaction with Temperature: Grain Legumes. J. Crop Improvement 13:113-155. https://doi.org/10.1300/J411v13n01_07