• Title/Summary/Keyword: 삼팔면체

Search Result 14, Processing Time 0.034 seconds

A Molecular Dynamics Simulation Study of Trioctahedral Clay Minerals (삼팔면체 점토광물에 대한 분자동역학 시뮬레이션 연구)

  • Lee, Jiyeon;Lee, Jin-Yong;Kwon, Kideok D.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.4
    • /
    • pp.161-172
    • /
    • 2017
  • Clay minerals play a major role in the geochemical cycles of metals in the Critical Zone, the Earth surface-layer ranging from the groundwater bottom to the tree tops. Atomistic scale research of the very fine particles can help understand the fundamental mechanisms of the important geochemical processes and possibly apply to development of hybrid nanomaterials. Molecular dynamics (MD) simulations can provide atomistic level insights into the crystal structures of clay minerals and the chemical reactivity. Classical MD simulations use a force field which is a parameter set of interatomic pair potentials. The ClayFF force field has been widely used in the MD simulations of dioctahedral clay minerals as the force field was developed mainly based on dioctahedral phyllosilicates. The ClayFF is often used also for trioctahedral mineral simulations, but disagreement exits in selection of the interatomic potential parameters, particularly for Mg atom-types of the octahedral sheet. In this study, MD simulations were performed for trioctahedral clay minerals such as brucite, lizardite, and talc, to test how the two different Mg atom types (i.e., 'mgo' or 'mgh') affect the simulation results. The structural parameters such as lattice parameters and interatomic distances were relatively insensitive to the choice of the parameter, but the vibrational power spectra of hydroxyls were more sensitive to the choice of the parameter particularly for lizardite.

Application of Computational Mineralogy to Studies of Hydroxyls in Clay Minerals (전산광물학을 이용한 점토광물 내의 수산기 연구 가능성)

  • Chae, Jin-Ung;Kwon, Kideok D.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.271-281
    • /
    • 2014
  • The physicochemical properties of clay minerals have been investigated at the atomistic to nano scale. The microscopic studies are often challenging to perform by using experimental approaches alone. In particular, hydroxyl groups of octahedral sheets in 2:1 clay minerals have been hypothesized to impact the sorption process of metal cations; however, X-ray based techniques alone, a common tool for mineral structure examination, cannot properly test the hypothesis. The current study has examined whether computational mineralogy techniques can be applied to examine the hydroxyl structures of clay minerals. Based on quantum-mechanics and molecular-mechanics computational methods, geometry optimizations were carried out for representative dioctahedral and trioctahedral phyllosilicate minerals. Both methods well reproduced the experimental lattice parameters; however, for structural distortion occurring in the tetrahedral or octahedral sheets, molecular mechanics showed significant deviations from experimental data. The orientation angle of the hydroxyl with respect to (001) basal plane is determined by the balance of repulsion between the hydroxyl proton and Si cations of tetrahedral sites; the quantum-mechanics method predicted $25-26^{\circ}$ for the angle, whereas the angle predicted by the molecular-mechanics method was much higher by $10^{\circ}$ (i.e., $35^{\circ}$). These results demonstrate that computational mineralogy techniques are a reliable tool for clay mineral studies and can be used to further elucidate the roles of hydroxyls in metal sorption process.

온도증가에 따른 삼팔면체운모 내 OH기의 구조변화 연구; 중성자 분말회절법을 이용한 In-situ 연구

  • 이철규;송윤구;김신애;문희수;전철민;성기훈
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.175-177
    • /
    • 2003
  • 삼팔면체 운모의 결정구조에 대한 연구는 많은 학자들에 의해 진행되어 왔다. 하지만 주로 X선 단결정법을 이용하였기 때문에 수소에 대한 정보는 부족하다. 온도의 증가나 풍화에 의해 결정구조의 변화는 수산화기의 길이나 방향성에 영향을 주는데 위와 같은 X선에 의한 연구로는 한계를 가지게 된다. 이러한 단점을 극복하기 위한 방법으로 중성자 단결정법이나 중성자분말회절법을 사용할 수 있으나 중성자 단결정법은 일정크기 이상($5{\times}5{\times}0.4$mm, Rayner 1974)의 완전한 단결정을 대상시료로 이용해야 하는 단점이 있다. (중략)

  • PDF

Effects of Fe Substitution on Lithium Incorporation into Muscovite (백운모 내 리튬 함유에 대한 Fe 치환의 영향)

  • Chae, Jin-Ung;Kwon, Kideok D.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.127-133
    • /
    • 2015
  • Li-bearing muscovite is commonly found along with trioctahedral lepidolite in granitic pegmatites. Structurally, $Li^+$ ions can replace $K^+$ ions in the interlayer (Int) of muscovite or incorporate into vacancies of the dioctahedral sheet (Sub). However, detailed mechanism of the lithium incorporation into muscovite is challenging to investigate using experimental techniques alone. In the current study, density functional theory (DFT) has been applied to examine the crystal structure and energy variation when $Li^+$ resides in the interlayer or the octahedral sheet. Depending on the position of $Li^+$ (i.e., Int vs. Sub), DFT showed significant differences in the mica's structures such as lattice parameters, sheet thickness, interlayer separation, and OH angles with respect to the ab plane. DFT further showed that, in pure muscovite, $Li^+$ has a lower energy when it is located in Int than Sub. By contrast, in the case of $Fe^{2+}$ substitution into the octahedral sheet, $Li^+$ has a lower energy in Sub than in Int. These results imply that $Li^+$ incorporates into the Al octahedral sheets only when the octahedral sheets possess structural charges, suggesting cation substitution in the octahedral sheets plays an important role in the Li incorporation mechanism into muscovite. They can also explain the experimental observation about the positive relationship between $Fe^{2+}$ and $Li^+$ amounts in Li-bearing muscovite.

A Geometrical Structural Model of 2:1 Trioctahedral Clay Minerals (2:1 삼팔면체 점토광물의 기하학적 구조모델)

  • 유재영
    • Journal of the Mineralogical Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.90-98
    • /
    • 1991
  • This study introduces a new structural model of 1M 2:1 trioctahedral clay minerals or, more generally, 2:1 trioctahedral phyllosilicates. The structural model requires only the chemical formulae of the clay minerals as an input and uses the regression relation (Radoslovich, 1962) to calculate the a- and b-dimensions of the phyllosilicates with the given chemical formulae. The atomic coordinates of the constituent atoms are geometrically calculated for C2/m space group under the assumption that the interatomic distances are constant. To determine the c-dimension, this study calculates the binding energies of 1M 2:1 trioctahedral phyllosilicates as a function of d(001) and find the minimum energy producing d(001). The structural model generates the cell dimensions, interaxial angles, interatomic distances, octahedral, tetrahedral and interlayer thickness, polyhedron deformation angles and atomic coordinates in the unit cell. The simulated structural parameters of phlogopite and annite are very close to the reported data by Hazen and Burnham (1973), suggesting that the structure simulation using only the chemical formule is successful, and thus, that the structural model of this study overcomes the difficulties in the previous models by other investigators.

  • PDF

Rietveld Structure Refinement of Biotite Using Neutron Powder Diffraction (중성자분말회절법을 이용한 흑운모의 Rietveld Structure Refinement)

  • 전철민;김신애;문희수
    • Economic and Environmental Geology
    • /
    • v.34 no.1
    • /
    • pp.1-12
    • /
    • 2001
  • The crystal structure of biotite-1M from Bancroft, Ontario, was determined by Rietveld refinement method using high-resolution neutron powder diffraction data at -26.3$^{\circ}C$, 2$0^{\circ}C$, 30$0^{\circ}C$, $600^{\circ}C$, 90$0^{\circ}C$. The crystal structure has been refined to a R sub(B) of 5.06%-11.9% and S (Goodness of fitness) of 2.97-3.94. The expansion rate of a, b, c unit cell dimensions with elevated temperature linearly increase to $600^{\circ}C$. The expansivity of the c dimension is $1.61{\times}10^{40}C^{-1}$, while $2.73{\times}10^{50}C^{-1}$ and $5.71{\times}10^{-50}C^{-1}$ for the a and b dimensions, respectively. Thus, the volume increase of the unit cell is dominated by expansion of the c axis as increasing temperature. In contrast to the trend, the expansivity of the dimensions is decreased at 90$0^{\circ}C$. It may be attributed to a change in cation size caused by dehydroxylation-oxidation of $Fe^{2+}$ to $Fe^{3+}$ in vacuum condition at such high temperature. The position of H-proton was determined by the refinement of diffraction pattern at low temperature (-2.63$^{\circ}C$). The position is 0.9103${\AA}$ from the O sub(4) location and located at atomic coordinates (x/a=0.138, y/b=0.5, z/c=0.305) with the OH vector almost normal to plane (001). According to the increase of the temperature, $\alpha$* (tetrahedral rotation angle), $t_{oct}$ (octahedral sheet thickness), mean distance increase except 90$0^{\circ}C$ data. But the trend is less clearly relative to unit cell dimension expansion because the expansion is dominant to the interlayer. Also, ${\Psi}$ (octahedral flattening angle) shows no trends as increasing temperature and it may be because the octahedron (M1, M2) is substituted by Mg and Fe.

  • PDF

Mineralogical Changes in the Weathering Profiles of Carnin Gneiss in the Yoogoo Area, Korea (유구지역 화강암질 편마암의 풍화작용에 의한 광물 조성의 변화)

  • 이석훈;김수진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.121-137
    • /
    • 2000
  • Weathering profiles which were developed under a temperate, humid environment and relatively steep geography, show a thick saprolite and soil horiaon in the Precambrian granitic gneiss of the Yoogoo area. In the weathering profiles, secondary minerals such as interstratified biotite/vermiculite, tri- or di-octahedral vermiculite, halloysite, kaolinite, illite, smectite, gibsite and geothite were observed. Kaolinization of biotite is the most prevalent mechanism but vermiculitization is a minor from all ofweathering profiles. Biotite altered to B/V mixed layer-vermiculite, to illite and to halloysite, kaolinite and gibbsite. Halloysite is the most frequently observed weathering product of biotite in these profiles. Goethite is observed at the around or opened fissures of altered biotite. Tubular halloysite aggregates was fDrmed from dissolution-precipitation of plagioclase. The occurrence of halloysite aggregates is divided into a preferentially oriented type and a wrinkled one which were resulted from the dissolved type of plagioclase. Fe-bearing minerals have also been subjected to dissolution leaving the precipitation of geothite along dissolution voids. The profile of granitic gneiss is a typical weathering pattern showing a clay minerals increase toward the surface. Weathering of minerals were controlled by locally acidic and good-drainage environment, and formed a various and complicated secondary minerals in this study area.

  • PDF

Metamorphism of the Hongjesa granite and the adjacent metasedimentary rocks(Magmatism and metamorphism of the Proterozoic in the northeastern part of Korea) (홍제사 화강암과 주변 변성퇴적암류의 변성작용 (한국 북동부지역의 원생대의 화성활동과 변성작용))

  • Jeongmin Kim;Moonsup Cho;Hyung Shik Kim
    • The Journal of the Petrological Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.94-108
    • /
    • 1994
  • The Precambrian granite, and the Yuli group and the Hyeondong gneisss complex are studied to unravel the metamorphic history of the northeastern Sobaeksan massif. The Hongjesa granite, emplaced at 650-$700^{\circ}C$ and $3{\pm}1$ kbar, has been altered at 310-$568^{\circ}C$. Not only the chloritization of biotite but also the sericitization and saussuritization of plagioclase occur at the subsolidus stage. Biotites of the Hongjesa granite vary in their Al, Fe and Mg contents through dioctahedral and tschermakitic substitutions during the subsolidus stage. Secondary muscovites from biotite and feldspars are enriched in their Si and Mg+Fe contents through tschermakitic and trictahedral substitutuions. The metamorphic pressures and temperatures estimated from the Hyeondong gneiss complex are 3.6-6.6 kbar and 593-$718^{\circ}C$, respectively. Local migmatization producing the cordierite-bearing assemblage occurs in the Hyeondong gneiss complex. The Gibbs' method applied to the assemblage of garnet+biotite+plagioclase+quartz in banded gneiss suggests a complex P-T history of the Hyeondong gneiss complex.

  • PDF