DOI QR코드

DOI QR Code

A Molecular Dynamics Simulation Study of Trioctahedral Clay Minerals

삼팔면체 점토광물에 대한 분자동역학 시뮬레이션 연구

  • Lee, Jiyeon (Critical zone Frontier Research Laboratory, Kangwon National University) ;
  • Lee, Jin-Yong (Critical zone Frontier Research Laboratory, Kangwon National University) ;
  • Kwon, Kideok D. (Critical zone Frontier Research Laboratory, Kangwon National University)
  • 이지연 (강원대학교 크리티컬존 선도 연구실) ;
  • 이진용 (강원대학교 크리티컬존 선도 연구실) ;
  • 권기덕 (강원대학교 크리티컬존 선도 연구실)
  • Received : 2017.10.19
  • Accepted : 2017.12.18
  • Published : 2017.12.30

Abstract

Clay minerals play a major role in the geochemical cycles of metals in the Critical Zone, the Earth surface-layer ranging from the groundwater bottom to the tree tops. Atomistic scale research of the very fine particles can help understand the fundamental mechanisms of the important geochemical processes and possibly apply to development of hybrid nanomaterials. Molecular dynamics (MD) simulations can provide atomistic level insights into the crystal structures of clay minerals and the chemical reactivity. Classical MD simulations use a force field which is a parameter set of interatomic pair potentials. The ClayFF force field has been widely used in the MD simulations of dioctahedral clay minerals as the force field was developed mainly based on dioctahedral phyllosilicates. The ClayFF is often used also for trioctahedral mineral simulations, but disagreement exits in selection of the interatomic potential parameters, particularly for Mg atom-types of the octahedral sheet. In this study, MD simulations were performed for trioctahedral clay minerals such as brucite, lizardite, and talc, to test how the two different Mg atom types (i.e., 'mgo' or 'mgh') affect the simulation results. The structural parameters such as lattice parameters and interatomic distances were relatively insensitive to the choice of the parameter, but the vibrational power spectra of hydroxyls were more sensitive to the choice of the parameter particularly for lizardite.

점토광물은 지하수 바닥부터 산림에 이르는 지구의 얇은 표면에 해당하는 '크리티컬존(critical zone)'에 존재하는 금속원소의 지구화학적 순환에 중요한 역할을 한다. 입자 크기가 매우 작은 점토광물에 대한 원자 수준(atomistic scale)의 연구는 지구화학적 순환 과정에 대한 정확한 기작(mechanism)을 규명할 수 있을 뿐만 아니라 재료개발과 같은 산업분야에도 응용될 수 있다. 원자 간의 페어 퍼텐셜(pair potential)을 파라미터화한 힘 장(force field)을 사용하는 분자동역학(molecular dynamics) 컴퓨터 시뮬레이션은 원자 수준의 정보를 제공할 수 있기 때문에 실험과 함께 점토광물의 결정구조와 반응도 연구에 사용된다. 점토광물 시뮬레이션을 위한 힘 장으로는 이팔면체(dioctahedral) 광물을 기반으로 만들어진 ClayFF 힘 장이 보편적으로 사용된다. 삼팔면체(trioctahedral) 광물 시뮬레이션에도 ClayFF를 사용하는 연구가 보고되고 있으나, 같은 광물을 계산하더라도 각 연구마다 다른 파라미터 값을 사용하고 있기 때문에 파리미터 선택이 시뮬레이션의 정확도에 어떤 영향을 미치는지 체계적인 테스트가 필요하다. 이번 연구에서는 삼팔면체 광물인 수활석, 리자다이트, 활석을 대상으로 팔면체 마그네슘(Mg)의 원자간 페어 퍼텐셜을 나타내는 파라미터 'mgo'와 'mgh'를 각각 사용하여 분자동역학 시뮬레이션 계산결과를 비교하였다. 격자상수, 원자 간의 거리 등 삼팔면체 점토광물의 결정구조는 주어진 두 가지 파라미터에 관계없이 거의 일정한 결과를 보여주었지만, 진동 파워 스펙트럼(vibrational power spectrum)으로 계산한 수산기의 진동수는 파라미터에 따라 상대적으로 뚜렷한 차이를 보였다.

Keywords

References

  1. Allen, M. P. (2004) Introduction to molecular dynamics simulation. In Attig, N., Binder, K., Grubmuller, H., Kremer, K. (eds.), Computational Soft Matter: From Synthetic Polymers to Proteins, John von Neumann Institute for Computing, Julich, NIC Series 23, 1-28.
  2. Allen, M. P. and Tildesley, D. J. (2017) Computer simulation of liquids (2nd ed.). Oxford university press. 626p.
  3. Bailey, S. W. (1980) Summary of recommendations of AIPEA nomenclature committee on clay minerals. American Mineralogist, 65, 1-7.
  4. Balan, E., Saitta, A., Mauri, F., Lemaire, C., and Guyot, F. (2015). First-principles calculation of the infrared spectrum of lizardite. American Mineralogist, 87, 1286-1290.
  5. Bougeard, D., Smirnov, K. S., and Geidel, E. (2000) Vibrational spectra and structure of kaolinite: A computer simulation study. Journal of Physical Chemistry B, 104, 9210-9217. https://doi.org/10.1021/jp0013255
  6. Braterman, P. S. and Cygan, R. T. (2006) Vibrational spectroscopy of brucite: A molecular simulation investigation. American Mineralogist, 91, 1188-1196. https://doi.org/10.2138/am.2006.2094
  7. Catti, M., Ferraris, G., Hull, S., and Pavese, A. (1995) Static compression and H disorder in brucite, Mg (OH) 2, to 11 GPa: a powder neutron diffraction study. Physics and Chemistry of Minerals, 22, 200-206.
  8. Costanzo, P. M. (2001) Baseline studies of the clay minerals society source clays: Introduction. Clays and Clay Minerals, 49, 372-373. https://doi.org/10.1346/CCMN.2001.0490502
  9. Cygan, R. T. (2001) Molecular modeling in mineralogy and geochemistry. Reviews in Mineralogy and Geochemistry, 42, 1-35. https://doi.org/10.2138/rmg.2001.42.1
  10. Cygan, R. T., Liang, J. J., and Kalinichev, A. G. (2004) Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. Journal of Physical Chemistry B, 108, 1255-1266. https://doi.org/10.1021/jp0363287
  11. Du, H. and Miller, J. D. (2007) A molecular dynamics simulation study of water structure and adsorption states at talc surfaces. International Journal of Mineral Processing, 84, 172-184. https://doi.org/10.1016/j.minpro.2006.09.008
  12. Dube, A., Zbytniewski, R., Kowalkowski, T., Cukrowska, E., and Buszewski, B. (2001) Adsorption and migration of heavy metals in soil. Polish journal of environmental studies, 10, 1-10.
  13. Ewald, P. P. (1921) Die Berechnung optischer und elektrostatischer Gitterpotentiale. Annalen der Physik, 369, 253-287. https://doi.org/10.1002/andp.19213690304
  14. Farmer, V. C. (1958) The infrared spectra of talc, saponite and hectorite. Mineralogical Magazine, 31, 829-845. https://doi.org/10.1180/minmag.1958.031.241.03
  15. Frost, R. L. and Kloprogge, J. T. (1999). Infrared emission spectroscopic study of brucite. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 55, 2195-2205. https://doi.org/10.1016/S1386-1425(99)00016-5
  16. Fuchs, Y., Linares, J., and Mellini, M. (1998). Mossbauer and infrared spectrometry of lizardite-1T from Monte Fico, Elba. Physics and Chemistry of Minerals, 26, 111-115. https://doi.org/10.1007/s002690050167
  17. Gonzalez, M. A. (2011) Force fields and molecular dynamics simulations. Ecole thematique de la Societe Francaise de la Neutronique, 12, 169-200.
  18. Greathouse, J. A. and Cygan, R. T. (2005) Molecular dynamics simulation of uranyl (VI) adsorption equilibria onto an external montmorillonite surface. Physical Chemistry Chemical Physics, 7, 3580-3586. https://doi.org/10.1039/b509307d
  19. Greathouse, J. A., Durkin, J. S., Larentzos, J. P., and Cygan, R. T. (2009) Implementation of a Morse potential to model hydroxyl behavior in phyllosilicates. Journal of Chemical Physics, 130, 134713. https://doi.org/10.1063/1.3103886
  20. Gregorkiewitz, M., Lebech, B., Mellini, M., and Viti, C. (1996) Hydrogen positions and thermal expansion in lizardite-1T from Elba: A low-temperature study using Rietveld refinement of neutron diffraction data. American Mineralogist, 81, 1111-1116. https://doi.org/10.2138/am-1996-9-1008
  21. Grim, R. E. (1968) Clay Mineralogy. McGraw-Hill, New York, 596p.
  22. Hansen, J. P. and McDonald, I. R. (1990) Theory of simple liquids (2nd ed.). Academic Press, San Diego, 104p.
  23. Jones, J. E. (1924) On the determination of molecular fields. II. From the equation of state of a gas. Proceedings of the Royal Society, 106, 463-477. https://doi.org/10.1098/rspa.1924.0082
  24. Komadel, P., Bujdak, J., Madejova, J., Sucha, V., and Elsass, F. (1996) Effect of non-swelling layers on the dissolution of reduced-charge montmorillonite in hydrochloric acid. Clay Minerals, 31, 333-345. https://doi.org/10.1180/claymin.1996.031.3.04
  25. Kwon, K. D. and Newton, A. G. (2016) Structure and stability of pyrophyllite edge surfaces: Effect of temperature and water chemical potential. Geochimica et Cosmochimica Acta, 190, 100-114. https://doi.org/10.1016/j.gca.2016.06.021
  26. Larentzos, J. P., Greathouse, J. A., and Cygan, R. T. (2007) An ab initio and classical molecular dynamics investigation of the structural and vibrational properties of talc and pyrophyllite. Journal of Physical Chemistry C, 111, 12752-12759. https://doi.org/10.1021/jp072959f
  27. Lee, J. G. (2006) Computational Materials Science: Introduction, Young, Uiwang, 179p.
  28. Lien, R. H. and Kramer, D. A. (1985) Recovery of Lithium from a Montmorillonite-type Clay. US Department of the Interior, Bureau of Mines.
  29. Mellini, M. (1982) The crystal structure of lizardite 1T: hydrogen bonds and polytypism. American Mineralogist, 67, 587-598.
  30. Mellini, M. and Viti, C. (1994). Crystal structure of lizardite-1T from Elba, Italy. American Mineralogist, 79, 1194-1198.
  31. Moore, D. M. and Reynolds, R. C. (1989) X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford university press, Oxford, 332p.
  32. Newton, A. G., Kwon, K. D., and Cheong, D. K. (2016) Edge structure of montmorillonite from atomistic simulations. Minerals, 6, 25. https://doi.org/10.3390/min6020025
  33. Nose, S. (1984a) A molecular dynamics method for simulations in the canonical ensemble. Molecular Physics, 52, 255-268. https://doi.org/10.1080/00268978400101201
  34. Nose, S. (1984b) A unified formulation of the constant temperature molecular dynamics methods. Journal of Chemical Physics, 81, 511-519. https://doi.org/10.1063/1.447334
  35. Nose, S. (1991) Constant temperature molecular dynamics methods. Progress of Theoretical Physics Supplement, 103, 1-46. https://doi.org/10.1143/PTPS.103.1
  36. U.S. Geological Survey (2017) Mineral Commodity Summaries 2017. National Minerals Information Center available on the World Wide Wep, accessed October 17, 2017, at URL https://minerals.usgs.gov/minerals/pubs/mcs/.
  37. Parrinello, M. and Rahman, A. (1981) Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52, 7182-7190. https://doi.org/10.1063/1.328693
  38. Perdikatsis, B. and Burzlaff, H. (1981) Strukturverfeinerung am Talk $Mg_3[(OH)_2Si_4O_{10}]$. Zeitschrift fur Kristallographie-Crystalline Materials, 156, 177-186.
  39. Redfern, S. A. T. and Wood, B. J. (1992) Thermal expansion of brucite, $Mg(OH)_2$. American mineralogist, 77, 1129-1132.
  40. Sainz-Diaz, C. I., Hernandez-Laguna, A., and Dove, M. T. (2001) Modeling of dioctahedral 2 : 1 phyllosilicates by means of transferable empirical potentials. Physics and Chemistry of Minerals, 28, 130-141. https://doi.org/10.1007/s002690000139
  41. Savage, D. (ed.) (1995) The scientific and regulatory basis for the geological disposal of radioactive waste. Wiley, 454p.
  42. Soma, Y. and Soma, M. (1989) Chemical reactions of organic compounds on clay surfaces. Environmental Health Perspectives, 83, 205. https://doi.org/10.1289/ehp.8983205
  43. Teppen, B. J., Rasmussen, K., Bertsch, P. M., Miller, D. M., and Schafer, L. (1997) Molecular dynamics modeling of clay minerals. 1. Gibbsite, kaolinite, pyrophyllite, and beidellite. Journal of Physical Chemistry B, 101, 1579-1587. https://doi.org/10.1021/jp961577z
  44. Tucker, M. R. (1999) Soil Fertility Notes 13; Clay minerals: their importance and function in soils. NCDA and CS Agronomic Division available on the Wep, accessed October 17, 2017, at URL http://www.ncagr.gov/agronomi/uyrst.htm.
  45. Velde, B. (1992) Introduction to clay minerals: chemistry, origins, uses and environmental significance. Chapman and Hall Ltd., 198p.
  46. Wang, J., Kalinichev, A. G., and Kirkpatrick, R. J. (2004) Molecular modeling of water structure in nano-pores between brucite (001) surfaces. Geochimica et Cosmochimica Acta, 68, 3351-3365. https://doi.org/10.1016/j.gca.2004.02.016
  47. Wang, J., Kalinichev, A. G., and Kirkpatrick, R. J. (2006) Effects of substrate structure and composition on the structure, dynamics, and energetics of water at mineral surfaces: A molecular dynamics modeling study. Geochimica et Cosmochimica Acta, 70, 562-582. https://doi.org/10.1016/j.gca.2005.10.006
  48. Zeitler, T. R., Greathouse, J. A., Gale, J. D., and Cygan, R. T. (2014) Vibrational analysis of brucite surfaces and the development of an improved force field for molecular simulation of interfaces. Journal of Physical Chemistry C, 118, 7946-7953.