Rietveld Structure Refinement of Biotite Using Neutron Powder Diffraction

중성자분말회절법을 이용한 흑운모의 Rietveld Structure Refinement

  • 전철민 (연세대학교 지구시스템과학과) ;
  • 김신애 (한국원자력연구소 하나로이용기술개발팀) ;
  • 문희수 (연세대학교 지구시스템과학과)
  • Published : 2001.02.01

Abstract

The crystal structure of biotite-1M from Bancroft, Ontario, was determined by Rietveld refinement method using high-resolution neutron powder diffraction data at -26.3$^{\circ}C$, 2$0^{\circ}C$, 30$0^{\circ}C$, $600^{\circ}C$, 90$0^{\circ}C$. The crystal structure has been refined to a R sub(B) of 5.06%-11.9% and S (Goodness of fitness) of 2.97-3.94. The expansion rate of a, b, c unit cell dimensions with elevated temperature linearly increase to $600^{\circ}C$. The expansivity of the c dimension is $1.61{\times}10^{40}C^{-1}$, while $2.73{\times}10^{50}C^{-1}$ and $5.71{\times}10^{-50}C^{-1}$ for the a and b dimensions, respectively. Thus, the volume increase of the unit cell is dominated by expansion of the c axis as increasing temperature. In contrast to the trend, the expansivity of the dimensions is decreased at 90$0^{\circ}C$. It may be attributed to a change in cation size caused by dehydroxylation-oxidation of $Fe^{2+}$ to $Fe^{3+}$ in vacuum condition at such high temperature. The position of H-proton was determined by the refinement of diffraction pattern at low temperature (-2.63$^{\circ}C$). The position is 0.9103${\AA}$ from the O sub(4) location and located at atomic coordinates (x/a=0.138, y/b=0.5, z/c=0.305) with the OH vector almost normal to plane (001). According to the increase of the temperature, $\alpha$* (tetrahedral rotation angle), $t_{oct}$ (octahedral sheet thickness), mean distance increase except 90$0^{\circ}C$ data. But the trend is less clearly relative to unit cell dimension expansion because the expansion is dominant to the interlayer. Also, ${\Psi}$ (octahedral flattening angle) shows no trends as increasing temperature and it may be because the octahedron (M1, M2) is substituted by Mg and Fe.

본 연구에서는 층상규산염광물 중 삼팔면체 운모족에 속하는 흑운모-1Μ 시료를 대상으로 중성자분말회절분석을 수행하였다. 분말회절분석기의 저온 및 고온 시료장치를 이용하여 -263$^{\circ}C$, 상온, 30$0^{\circ}C$, $600^{\circ}C$, 90$0^{\circ}C$의 온도조건에서 중성자 회절자료를 취득하였으며 Rietveld법으로 구조분석을 실시하였다. 정밀화 지수 $R_{b}$는 5.06%-11.9%, S(Goodness of fitness)는 2.97~3.94로 수렴되었다. -263$^{\circ}C$부터 $600^{\circ}C$까지는 단위포상수 a, b, c가 온도의 증가에 따라서 팽창되는 경향을 뚜렷하게 관찰할 수 있었으며 90$0^{\circ}C$에서는 a와 b의 경우 오히려 감소하는 결과를 보여주었다. -263$^{\circ}C$~$600^{\circ}C$ 온도구간에서 c축의 팽창성은 a, b 축의 팽창성에 비하여 상대적으로 더 크며 이는 단위포의 부피증가가 이 온도 범위에서는 c축의 팽창에 의해 주도됨을 지시한다. 90$0^{\circ}C$에서 보이는 경향의 불일치성은 이 온도에서 탈수산기화-산화반응이 우세하게 발생함으로서 팔면체 구조내 $Fe^{2+}$$Fe^{3+}$ 로 산화되어 양이온 반경이 변화되었기 때문으로 해석된다. 저온조건(-263$^{\circ}C$)에서 결정된 수소원자의 위치는 O4자리로부터 0.9103$\AA$ 떨어져서 (x/a=0.138, y/b=0.5, z/c=0.305)의 위치에 존재하는 것으로 계산되었다. 각 온도조건에 대하여 사면체회전각($\alpha$*, 팔면체판 두께($t_{oct}$), M-O간 거리는 단위포축 팽창성 결과와 마찬가지로 90$0^{\circ}C$의 고온조건을 제외하고는 일반적으로 온도가 증가함에 따라서 $\alpha$*, $t_{oct}$, M-O간 거리가 증가하는 경향을 보이지만 그경향이 상대적으로 덜 분명하며, 온도변화에 따른 팔면체 형태변화의 경향은 보이지 않았는데, 이는 금운모 등과 달리 M1, M2 팔면체에는 Fe와 Mg가 치환되어 분포하고 있기 때문으로 해석된다.다.

Keywords

References

  1. 점토광물학 문희수
  2. In Reviews in Mineralogy, Mineralogical Society of America v.13 Crystal chemistry of the true micas Bailey, S.W.
  3. Dynamic elestrochemical assessment of redox reaction in natural micas between 513 and 1373 k at 105 Pa. American mineralogist v.84 Burkland, D.J.M.;Ulmer, G.C.;Redhammer, G;Myer, G.H.
  4. Bull. U. S. Geol. Surv. v.1036-D Correlation of dioctahedral potassium micas on the basis of their chage relations Foster, M.D.
  5. Prof. Pap. U.S. Geol. Survey v.354-B Interpretation of the composition of trioctahedral micas Foster. M.D.
  6. Prof. Pap. U.S. Geol. Survey v.354-E Interpretation of the composition of lithium micas Foster. M.D.
  7. Prof. Pap. U.S. Geol. Survey v.474-F Water content of micas and chlorites Foster. M.D.
  8. Prof, Pap. U.S. Geol. Survey Studies of celadonite and glauconite Foster, M.D.
  9. American mineralogist v.58 The Crystal structure of one-year phlogopite abs annite Hazen, R.M.;Burnham , C.W.
  10. Mineralogical Magazine v.40 A M ssbauer study of thermal decompositon of biotites Hogg, C.S.;Meads, R.E.
  11. Neues Jahrbuch fur Minerlogie Monatshefte Neutronenbeugungsmessungen an einem 1M-phlogopit Joswig, W.
  12. American Minerlogist v.67 Mica polytism: similaoties in the crystal structures of 1M and 2M oxibiotite Ohta, T,Takeda, H.;Takeuchi, Y.
  13. physics and Chemistry of Minerals v.20 Kinetics of the ? Oxidation reaction in bulk single-crystal biotite studied by M ssbauer spectroscopy Rancourt, D.G.;Tume, P.;Lalonde, A.E.
  14. Acta. Crust. v.22 Line profile of neutron powder-diffraction peaks for structure refinement Reitveld, H.M.
  15. J. Appl. Cryst. v.2 A profile refinement method for neuclear and magnetic structures Reietveld, H.M.
  16. Contributions to Mineralogy and petrology v.25 Structural formulae of oxidized and hydroxyl-deficient micas and decomposition of the hydroxyl group Rimsaite, K.
  17. The Canadian Mineralogist v.37 Crystal structures of near-end-member phlogopite at high temperatures and heat-treated Fe-rich phlogopite: The influence of the O, OH, F site Russel, R.L.;Guggenheim, S.
  18. Journal of inorganic nuclear chemistry v.40 A m ssbauer study of the effect og heating biotite, phlogopite and vermoculite Tripathi, R.P.; Chandra, U.;Chandra, R.;lokanathan, S.
  19. American minerlogist v.54 Dehydroxylation and rehydroxilation and reduction of micas Vwdder, W.;Wilkins, R.W.T.
  20. J. Appl. Cryst. v.14 A new computer program for Rietveld analysis of X-ray powder diffraction patterns Willes, D.B.;Young, R.A.
  21. The Rietveld method The Rietveld method Young, R.A.