DOI QR코드

DOI QR Code

Effects of Fe Substitution on Lithium Incorporation into Muscovite

백운모 내 리튬 함유에 대한 Fe 치환의 영향

  • 채진웅 (강원대학교 자연과학대학 지질학과) ;
  • 권기덕 (강원대학교 자연과학대학 지질학과)
  • Received : 2015.06.11
  • Accepted : 2015.06.25
  • Published : 2015.06.30

Abstract

Li-bearing muscovite is commonly found along with trioctahedral lepidolite in granitic pegmatites. Structurally, $Li^+$ ions can replace $K^+$ ions in the interlayer (Int) of muscovite or incorporate into vacancies of the dioctahedral sheet (Sub). However, detailed mechanism of the lithium incorporation into muscovite is challenging to investigate using experimental techniques alone. In the current study, density functional theory (DFT) has been applied to examine the crystal structure and energy variation when $Li^+$ resides in the interlayer or the octahedral sheet. Depending on the position of $Li^+$ (i.e., Int vs. Sub), DFT showed significant differences in the mica's structures such as lattice parameters, sheet thickness, interlayer separation, and OH angles with respect to the ab plane. DFT further showed that, in pure muscovite, $Li^+$ has a lower energy when it is located in Int than Sub. By contrast, in the case of $Fe^{2+}$ substitution into the octahedral sheet, $Li^+$ has a lower energy in Sub than in Int. These results imply that $Li^+$ incorporates into the Al octahedral sheets only when the octahedral sheets possess structural charges, suggesting cation substitution in the octahedral sheets plays an important role in the Li incorporation mechanism into muscovite. They can also explain the experimental observation about the positive relationship between $Fe^{2+}$ and $Li^+$ amounts in Li-bearing muscovite.

리튬-함유 백운모는 삼팔면체 레피돌라이트(lepidolite)와 함께 화강암 페그마타이트 주변에서 발견되는 대표적인 리튬광물 중 하나이다. 백운모 결정구조를 고려하면 $Li^+$ 이온은 층간 $K^+$ 자리(Int)에 위치하거나 $Al^{3+}$ 팔면체층의 원자 빈자리(Sub)에 위치할 수 있지만, 실험만으로 백운모의 리튬 함유기작을 규명하는데 어려움이 있다. 이번 연구에서는 밀도범함수(density functional theory, DFT)를 사용하여 백운모 결정구조 내에 $Li^+$이 함유되는 위치와 이에 따른 미시적 구조 및 에너지 변화를 조사하였다. $Li^+$이 Int 또는 Sub에 위치할 경우, 운모의 결정상수, ab 면과 가지는 수산기의 각, 층간 거리 등 상당한 차이를 보여주었다. 뿐만 아니라, DFT 에너지 계산은 순수 백운모 구조에서는 $Li^+$$K^+$를 대신하여 Int에 위치하는 것이 Sub에 위치하는 것보다 더 낮은 에너지를 보여주었다. 그러나 팔면체층에 $Fe^{2+}$ 치환이 일어난 경우에는, $Li^+$이 Sub에 위치하는 것이 오히려 더 낮은 에너지를 보여주었다. 이번 DFT 연구결과는 기존의 $Li^-$함유 백운모 화학분석으로부터 발견한 $Fe^{2+}$$Li^+$의 상관관계를 설명해 줄 수 있으며, 백운모의 $Li^+$ 함유기작에서 팔면체층의 양이온 치환의 중요한 역할을 제시한다.

Keywords

References

  1. Brigatti, M.F., Kile, D.E., and Poppi, M. (2001) Crystal structure and crystal chemistry of lithium-bearing muscovite-2M1. Canadian Mineralogist, 39, 1171-1180. https://doi.org/10.2113/gscanmin.39.4.1171
  2. Calvet, R. and Prost, R. (1971) Cation migration into empty octahedral sites and surface properties of clays. Clays Clay Mineral, 19, 175-186. https://doi.org/10.1346/CCMN.1971.0190306
  3. Cerny, P. and Burt, D.M. (1984) Paragenesis, crystallochemical characteristics, and geochemical evolution of micas in granite pegmatites. Riviews in Mineralogy and Geochemistry, 13, 257-297.
  4. Chae, J.U. and Kwon, K.D. (2014) Application of Computational Mineralogy to studies of hydroxyls in clay minerals. Journal of the Mineralogical Society of Korea, 27, 271-281(in Korean with English abstract). https://doi.org/10.9727/jmsk.2014.27.4.271
  5. Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.J., Refson, K., and Payne, M.C. (2005) First principles methods using CASTEP. Zeitschrift fur Kristallographie, 220, 567-570.
  6. Ebina, T., Iwasaki, T., and Chatterjee, A. (1999) XPS and DFT study on the migration of lithium in montmorillonite. Clay Science, 10, 569-581.
  7. Foster, M.D. (1960) Interpretation of the composition of lithium micas. U.S. Geological Survey professional paper, 354-E, 115-147.
  8. Greene-Kelly, R. (1952) A Test for Montmorillonite. Nature, 170, 1130-1131. https://doi.org/10.1038/1701130a0
  9. Henderson, C.M.B. and Martin J.S. (1989) Compositional relations in Li-micas from S.W. England and France: an ion-and electron-microprobe study. Mineralogical Magazine, 53, 427-449. https://doi.org/10.1180/minmag.1989.053.372.03
  10. Hrobarikova, J., Madejova, J., and Komadel, P. (2001) Effect of heating temperature on Li-fixation, layer charge and properties of fine fractions of bentonites. Journal of Materials Chemistry, 11, 1452-1457. https://doi.org/10.1039/b100024l
  11. Kohn, W. and Hohenberg, P. (1964) Inhomogeneous electron gas. Physical Review, 136, B864-B871. https://doi.org/10.1103/PhysRev.136.B864
  12. Kohn, W. and Sham, L.J. (1965) Self-consistent equations including exchange and correlation effects. Physical Review, 140, A1133-A1138. https://doi.org/10.1103/PhysRev.140.A1133
  13. Lee, J.H. and Guggenheim, S. (1981) Single crystal X-ray refinement of pyrophyllite-1Tc. American Mineralogist, 66, 350-357.
  14. Marchal, K.L., Simmons, W.B., Falster, A.U., and Webber, K.L. (2014) Geochemistry, mineralogy, and evolution of Li-Al micas and feldspars from the mount mica pegmatite, maine, USA. Canadian Mineralogist, 52, 221-233. https://doi.org/10.3749/canmin.52.2.221
  15. Minisini, B. and Tsobnang, F. (2005) Ab initio comparative study of montmorillonite structural models. Applied Surface Science, 242, 21-28. https://doi.org/10.1016/j.apsusc.2004.07.057
  16. McCauley, J.W. and Newnham, R.E. (1971) Origin and prediction of ditrigonal distortions in micas. American Mineralogist, 56, 1626-1638.
  17. Monier, G. and Robert, J.L. (1986a): Muscovite solid solutions in the system $K_2O-MgO-FeO-Al_2O_3-SiO_2-H_2O$: an experimental study at 2 kbar $P_{H2O}$ and comparison with natural Li-free white micas. Mineralogical Magazine, 50, 257-266. https://doi.org/10.1180/minmag.1986.050.356.08
  18. Monier, G. and Robert, J.L. (1986b): Evolution of the miscibility gap between muscovite and biotite solid solutions with increasing lithium content: an experimental study in the system $K_2O-Li_2O-MgO-FeOAl_2O_3-SiO_2-H_2O-HF$ at $600^{\circ}C$, 2 kbar $P_{H2O}$ : comparison with natural lithium micas. Mineralogical Magazine, 50, 641-651. https://doi.org/10.1180/minmag.1986.050.358.09
  19. Perdew, J.P., Burke, K., and Ernzerhof, M. (1996) Generalized gradient approximation made simple. Physical Review Letters, 77, 3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865
  20. Stackhouse, S. and Coveney, P.V. (2002) Study of Thermally Treated Lithium Montmorillonite by Ab Initio Methods. Journal of Physical Chemistry B, 106, 12470-12477. https://doi.org/10.1021/jp025883q
  21. Thompson M. and Ukrainczyk L. (2002) Soil Mineralogy with Environmental Applications. SSSA Book Series, 7, 431-466.
  22. Vanderbilt, D. (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B, 41, 7892-7895. https://doi.org/10.1103/PhysRevB.41.7892
  23. Volfinger, M. and Robert, J.L. (1980) Structural control of the distribution of trace elements between silicates and hydrothermal solutions. Geochimica et Cosmocimica Acta, 44, 1455-1461. https://doi.org/10.1016/0016-7037(80)90110-6
  24. Voora, V.K., Al-Saidi, W.A., and Jordan, K.D. (2011) Density functional theory study of pyrophyllite and M-montmorillonites (M = Li, Na, K, Mg, and Ca): Role of dispersion interactions. Journal of Physical Chemistry A, 115, 9695-9703.

Cited by

  1. Detailed paragenesis and Li-mica compositions as recorders of the magmatic-hydrothermal evolution of the Maoping W-Sn deposit (Jiangxi, China) vol.264, 2016, https://doi.org/10.1016/j.lithos.2016.08.022
  2. Optimal Location of Vanadium in Muscovite and Its Geometrical and Electronic Properties by DFT Calculation vol.7, pp.3, 2017, https://doi.org/10.3390/min7030032