• Title/Summary/Keyword: 산화 아연

Search Result 562, Processing Time 0.028 seconds

Interface Functional Materials for Improving the Performance and Stability of Organic Solar Cell (유기태양전지의 효율 및 수명 향상을 위한 기능성 계면 소재 연구)

  • Hong, Kihyon;Park, Sun-Young;Lim, Dong Chan
    • Applied Chemistry for Engineering
    • /
    • v.25 no.5
    • /
    • pp.447-454
    • /
    • 2014
  • Organic solar cells (OSCs) have intensively studied in recent years due to their advantages such as cost effectiveness and possibility of applications in flexible devices. In spite of the high power conversion efficiency (PCE) of 10 %, the OSCs still have a draw back of their low environmental stability due to the oxidization of aluminum cathode and etching of transparent conducting oxide as electrode. To solve these problems, the inverted structured OSCs (I-OSCs) having greatest potential for achieving an improvement of device performances are suggested. Therefore, there are a lot of studies to develope of interface layer based on organic/inorganic materials for the electron transport layer (ETL) and passivation layer, significant advancements in I-OSCs have driven the development of interface functional materials including electron transport layer. Recent efforts to employing 2D/3D zinc oxide (ZnO) based ETL into I-OSCs have produced OSCs with a power conversion efficiency level that matches the efficiency of ~9 %. In this review, the technical issues and recent progress of ZnO based ETL in I-OSCs to enhancement of device efficiency and stability in terms of materials, process and characterization have summarized.

Optimization of ZnO-based transparent conducting oxides for thin-film solar cells based on the correlations of structural, electrical, and optical properties (ZnO 박막의 구조적, 전기적, 광학적 특성간의 상관관계를 고려한 박막태양전지용 투명전극 최적화 연구)

  • Oh, Joon-Ho;Kim, Kyoung-Kook;Song, Jun-Hyuk;Seong, Tae-Yeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.42.2-42.2
    • /
    • 2010
  • Transparent conducting oxides (TCOs) are of significant importance for their applications in various devices, such as light-emitting diodes, thin-film solar cells, organic light-emitting diodes, liquid crystal displays, and so on. In order for TCOs to contribute to the performance improvement of these devices, TCOs should have high transmittance and good electrical properties simultaneously. Sn-doped $In_2O_3$ (ITO) is the most commonly used TCO. However, indium is toxic and scarce in nature. Thus, ZnO has attracted a lot of attention because of the possibility for replacing ITO. In particular, group III impurity-doped ZnO showed the optoelectronic properties comparable to those of ITO electrodes. Al-doped ZnO exhibited the best performance among various doped ZnO films because of the high substitutional doping efficiency. However, in order for the Al-doped ZnO to replace ITO in electronic devices, their electrical and optical properties should further significantly be improved. In this connection, different ways such as a variation of deposition conditions, different deposition techniques, and post-deposition annealing processes have been investigated so far. Among the deposition methods, RF magnetron sputtering has been extensively used because of the easiness in controlling deposition parameters and its fast deposition rate. In addition, when combined with post-deposition annealing in a reducing ambient, the optoelectronic properties of Al-doped ZnO films were found to be further improved. In this presentation, we deposited Al-doped ZnO (ZnO:$Al_2O_3$ = 98:2 wt%) thin films on the glass and sapphire substrates using RF magnetron sputtering as a function of substrate temperature. In addition, the ZnO samples were annealed in different conditions, e.g., rapid thermal annealing (RTA) at $900^{\circ}C$ in $N_2$ ambient for 1 min, tube-furnace annealing at $500^{\circ}C$ in $N_2:H_2$=9:1 gas flow for 1 hour, or RTA combined with tube-furnace annealing. It is found that the mobilities and carrier concentrations of the samples are dependent on growth temperature followed by one of three subsequent post-deposition annealing conditions.

  • PDF

Preparation of ZnO/SiO2 Nano-Composition and Photocatalysts and Antibacterial Activity (ZnO/SiO2 나노 입자의 화학적 합성과 광촉매 및 항균성 특성에 관한 연구)

  • Kim, Jae-Uk;Yuk, Young-Sam;Kim, Jong-Gyu
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.4
    • /
    • pp.179-184
    • /
    • 2017
  • In this paper, a $ZnO/SiO_2$ nano-composite was prepared by a simple chemical method at room temperature. For the synthesis of ZnO nanoparticles (NPs), a sonochemical method was used, and $SiO_2$ NPs were prepared by precipitation method. The formation of $ZnO/SiO_2$ NCs was characterized by X-ray diffractometer (XRD) and confirmed by field-emission scanning electron microscopy (FE-SEM) and Fourier transform infra-red spectroscopy(FT-IR). The photocatalytic properties of $ZnO/SiO_2$ NCs formed at different concentrations of $SiO_2$ were evaluated by rhodamine-B dye. It was confirmed that increasing $SiO_2$ concentration resulted in an increase in the photocatalytic property. In addition, the antibacterial activity of $ZnO/SiO_2$ NCs was conducted against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). As a result, the antibacterial activities of E.coli and S. aureus were increased in the presence of thick SiO NPs layer.

Measurement of Adhesion Strength of Polyurethane Foam to Surface-Treated Carbon Steel and Effect of Water Vapor Absorption (발포 폴리우레탄과 탄소강과의 접착 강도 측정 및 수증기 흡착의 영향)

  • 김장순;조재동;임연수
    • Polymer(Korea)
    • /
    • v.27 no.4
    • /
    • pp.340-348
    • /
    • 2003
  • A previous stud-pull test was modified to measure the bond strength of polyurethane foam to carbon steel substrate. This test was appropriate in that the specimen foamed on Zn phosphated steel (0.95 kN) was broken at higher load than that of smooth galvanizing treated steel (0.38 kN). Among the samples foamed on the substrate atvarious preheating temperatures, the polyurethane foam to the steel held over 60$^{\circ}C$ exhibited very high bond strength. The samples were exposed at water vapor absorption, and, then, their bond strengths were measured. The adhesion was significantly reduced in the samples foamed on the steel at temperatures below 40$^{\circ}C$ and above 70$^{\circ}C$. For the polyurethane foams formulated with two blowing gases, the adhesion was higher by 0.03 kN in the samples with HCFC-l4lb than that with HFC-245fa. When the these samples were exposed at water vapor soaking, the reduction of the bond strength for the HFC-245fa blown sample was negligible due to smaller area fraction of void area filled with gas at interfacial area. Consequently, it was found that adhesion of polyurethane foam to metal substrate was determined by variation of microstructural features with substrate preheating, surface treatment type of blowing agent.

Dependence of the Diode Characteristics of ZnO/b-ZnO/p-Si(111) on the Buffer Layer Thickness and Annealing Temperature (버퍼막 두께 및 버퍼막 열처리 온도에 따른 ZnO/b-ZnO/p-Si(111)의 전기적 특성 변화 및 이종접합 다이오드 특성 평가)

  • Heo, Joo-Hoe;Ryu, Hyuk-Hyun
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.1
    • /
    • pp.50-56
    • /
    • 2011
  • In this study, the effects of ZnO buffer layer thickness and annealing temperature on the heterojunction diode, ZnO/b-ZnO/p-Si(111), were reported. The effects of those on the structural and electrical properties of zinc oxide (ZnO) films on ZnO buffered p-Si (111) substrate were also studied. Structural properties of ZnO thin films were studied by X-ray diffraction and I-V characteristics were measured by a semiconductor parameter analyzer. ZnO thin films with 70 nm thick buffer layer and annealing temperature of $700^{\circ}C$ showed the best c-axis preferred orientation. The best electrical property was found at the condition of buffer layer annealing temperature of $700^{\circ}C$ and 50nm thick ZnO buffer layer (resistivity: $2.58{\times}10^{-4}[{\Omega}-cm]$, carrier concentration: $1.16{\times}1020[cm^{-3}]$). The I-V characteristics for ZnO/b-ZnO/p-Si(111) heterojunction diode were improved with increasing buffer layer thickness at buffer layer annealing temperature of $700^{\circ}C$.

Electrical and Optical Properties of the GZO Transparent Conducting Layer Prepared by Magnetron Sputtering Technique (마그네트론 스퍼터링법으로 제작된 GZO 투명전도막의 전기적 및 광학적 특성)

  • No, Im-Jun;Kim, Sung-Hyun;Shin, Paik-Kyun;Lee, Kyung-Il;Kim, Sun-Min;Cho, Jin-Woo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.4
    • /
    • pp.110-115
    • /
    • 2010
  • Transparent conducting gallium-doped zinc oxide (GZO) thin films which were deposited on Corning glass substrate using an Gun-type rf magnetron sputtering deposition technology. The GZO thin films were fabricated with an GZO ceramic target (Zn : 97[wt%], $Ga_2O_3$ : 3[wt%]). The GZO thin films were deposited by varying the growth conditions such as the substrate temperature, oxygen pressure. Among the GZO thin films fabricated in this study, the one formed at conditions of the substrate temperature of 200[$^{\circ}C$], Ar flow rate of 50[sccm], $O_2$ flow rate of 5[sccm], rf power of 80[W] and working pressure of 5[mtorr] showed the best properties of an electrical resistivity of $2.536{\times}10^{-4}[{\Omega}{\cdot}cm]$, a carrier concentration of $7.746{\times}10^{20}[cm^{-3}]$, and a carrier mobility of 31.77[$cm^2/V{\cdot}S$], which indicates that it could be used as a transparent electrode for thin film transistor and flat panel display applications.

Treatability of Heavy Metals in the Washing Technology of Marine Sediments Contaminated with Organic Matter (세척기반처리에 의한 해양오염퇴적물에 함유된 유기 오염물질 제거 공정 중 중금속 처리 가능성)

  • Sim, Young Sub;Kim, Kyoung Rean;Kim, Suk Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.12
    • /
    • pp.851-857
    • /
    • 2014
  • Treatability of heavy metals in marine sediments contaminated with mainly organic matter was investigated on the basis of washing technology using oxidizers and surfactants. Sediment samples were collected at N area which expected for remediation project of contaminated marine sediment. For additives, hydrogen peroxide ($H_2O_2$) and Tween-80 were used at oxidizer and nonionic surfactant, respectively. In experiments, sediments was mixed with sea water at the ratio of 1 : 3 than $H_2O_2$ (1 M, 3 M, 4 M, 5 M) and Tween-80 (0.05%) were added. Samples were gathered at following reaction time (10, 20, 30, 40, 50, 60, 70, 80 min and 24 h). Total Organic Carbon (TOC) was 55.2% at the conditions of 5 M $H_2O_2+0.05%$ Tween-80 24 h. Hence total heavy metals were Cu 29.5%, Zn 42.3%, Cd 73.0% and bioavailable heavy metals were Cu 60.0%, Zn 77.7%, Cd 90.2% at the conditions of 5 M $H_2O_2+0.05%$ Tween-80 10 min. The correlations for between bioavailable metals (Cu, Zn, Cd) and TOC were significant (Cu, Zn, Cd; $r^2=0.94$, 0.85, 0.69, respectively).

The Photovoltaic Effect of Iodine-Doped Metal Free Phthalocyanine/ZnO System (Ⅱ). The Photovoltaic Effect of $ZnO/H_2Pc(I)_x$ Dispersed in Poly(9-vinylcarbazole) (요오드가 도핑된 무금속 프탈로시아닌/산화아연계의 광기전력 효과 (Ⅱ). Poly(9-vinylcarbazole)에 분산된 $ZnO/H_2Pc(I)_x$계의 광기전력 효과)

  • Heur, Soun-Ok;Kim, Young-Soon
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.3
    • /
    • pp.176-185
    • /
    • 1995
  • To improve photosensisitizing efficiency of ZnO/$H_2Pc(I)_x$ system, ZnO/$H_2Pc(I)_x$ system was dispersed in a typical photoconductive polymer of poly(9-vinylcarbazole)(PVCZ). The iodine dopant level(x) of ZnO/${\chi}-H_2Pc(I)_x$ is proportional to concentration of iodine, whereas x of ZnO/${\beta}-H_2Pc(I)_x$ decreased from the highest x=0.97 at more than $6.3{\times}10^{-3}$ M iodine solution. The Raman spectra of ZnO/${\chi}-H_2Pc(I)_x$ at 514 nm exhibited characteristic $I_3^-$ patterns in the range of 50∼550 $cm^{-1}$ at $x{\geq}0.57.$ The surface photovoltage of ZnO/${\chi}-H_2Pc(I)_{0.48}$/PVCZ was approximately 1.6 times greater than ZnO/${\chi}-H_2 Pc(I)_{0.48}$ and was 1.8 times of ZnO/${\chi}-H_2Pc(I)_{0.57}$/PVCZ at 670 nm. With ZnO/$H_2Pc(I)_x$/PVCZ, the highest iodine dopant levels showed a higher photovoltage. Therefore the injection of holes from H2Pc into PVCZ resulted in that photosensisitizing effect of ZnO/$H_2Pc(I)_x$/PVCZ system was improved compared to ZnO/$H_2Pc(I)_x$ case.

  • PDF

Fate and Bioaccumulation of Zinc Oxide Nanoparticles in a Microcosm (산화아연 나노물질의 미소생태계 내 거동 및 생물축적)

  • Kim, Eunjeong;Lee, Jae-woo;Jo, Eunhye;Sung, Hwa Kyung;Yoo, Sun Kyoung;Kim, Kyung-tae;Shin, Yu-jin;Kim, Ji-eun;Park, Sun-Young;Eom, Ig-chun;Kim, Pilje
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.3
    • /
    • pp.194-201
    • /
    • 2017
  • Objectives: Zinc oxide nanoparticles (ZnO NPs) are widely used in various commercial products, but they are exposed to the environment and can induce toxicity. In this study, we investigated the environmental fate and bioaccumulation of ZnO NPs in a microcosm. Methods: The microcosm was composed of water, soil (Lufa Soil 2.2) and organisms (Oryzias latipes, Neocaridina denticulata, Semisulcospira libertina). Point five and 5 mg/L of ZnO NPs were exposed in the microcosm for 14 days. Total Zn concentrations were measured using an Inductively Coupled Plasma Mass Spectrometer (ICP-MS) and intracellular NPs were observed using Transmission Electron Microscopy (TEM). Results: In the initial stages of exposure, the Zn concentrations in water increased in all exposure groups and then decreased, while the Zn concentration in soil increased after three hours for the 5 mg/L solution. Zn concentrations also showed increasing trends in N. denticulata and S. libertina at 0.5 and 5 mg/L, and in O. latipes at 5 mg/L. Accumulation of NPs was found in the livers of O. latipes and hepatopancreas of N. denticulata and S. libertina. Conclusions: In the early stages of exposure, ZnO NPs remained in the water, and then were transported to the soil and test species. Unlike other species, total Zn concentrations in N. denticulata and S. libertina increased for both 0.5 mg/L and 5 mg/L. Therefore, ZnO NPs were more easily accumulated in zoobenthos than in fish.

Nutritional Value of Dried Paddy Grasshopper, Oxya chinensis formosana (벼메뚜기 단백질(蛋白質)의 영양가(營養價)에 관한 연구)

  • Kim, Tae-Soo;Lee, Jong-Ho;Choi, Byeong-Dae;Ryu, Hong-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.16 no.2
    • /
    • pp.98-104
    • /
    • 1987
  • Studies were carried out to determined the optimal conditions of processing and changes in trypsin indigestible substrate(TIS) and in vitro protein digestibility of paddy grasshopper(Oxya chinensis formosana) under various drying conditions. The multienzyme assy and amino acid compositions were used to predict the quality changes of dried products. The in vitro protein digestidility of defatted products were higher than that of sun and hot air dried products. This results indicated that heat processing is decreased the digestibility, but is increased the TIS contents of dried samples. Amino acid composition of the products was comparable to the ANRC casein scoring pattern. The protein was espeoially low in the amount of lysine, tryptophan and methionine, but high in the quantity of aspartic acid, glutamic acid and arginine indicating that it could be a difference of the dry processing. C-PER and DC-PER were 2.65 and 2.44, respectively, in the defatted and freeze dried products and 2.49 and 2.30, respectively, in hot air dried products. From the these results, it could be confirmed that defatted and freeze dried products might be utilized with feed or foodstuff, unless the toxic substances were no longer detectable.

  • PDF