Browse > Article
http://dx.doi.org/10.14478/ace.2014.1110

Interface Functional Materials for Improving the Performance and Stability of Organic Solar Cell  

Hong, Kihyon (Korea Institute of Materials and Science, Surface Technology Division)
Park, Sun-Young (Photocatalytic Synthesis Group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente)
Lim, Dong Chan (Korea Institute of Materials and Science, Surface Technology Division)
Publication Information
Applied Chemistry for Engineering / v.25, no.5, 2014 , pp. 447-454 More about this Journal
Abstract
Organic solar cells (OSCs) have intensively studied in recent years due to their advantages such as cost effectiveness and possibility of applications in flexible devices. In spite of the high power conversion efficiency (PCE) of 10 %, the OSCs still have a draw back of their low environmental stability due to the oxidization of aluminum cathode and etching of transparent conducting oxide as electrode. To solve these problems, the inverted structured OSCs (I-OSCs) having greatest potential for achieving an improvement of device performances are suggested. Therefore, there are a lot of studies to develope of interface layer based on organic/inorganic materials for the electron transport layer (ETL) and passivation layer, significant advancements in I-OSCs have driven the development of interface functional materials including electron transport layer. Recent efforts to employing 2D/3D zinc oxide (ZnO) based ETL into I-OSCs have produced OSCs with a power conversion efficiency level that matches the efficiency of ~9 %. In this review, the technical issues and recent progress of ZnO based ETL in I-OSCs to enhancement of device efficiency and stability in terms of materials, process and characterization have summarized.
Keywords
Inverted organic solar cell; electron transporting layer; ZnO; Surface modification; Stability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure, Nat. Photonics, 6, 593-597 (2012).   DOI
2 Y.-H. Chen, C.-W. Chen, Z.-Y. Huang, W.-C. Lin, L.-Y. Lin, F. Lin, K.-T. Wong, and H.-W. Lin, Microcavity-embedded, colour-tuneable, transparent organic solar cells, Adv. Mater., 26, 114-117 (2014).
3 K. Schmidt, C. J. Tassone, J. R. Niskala, A. T. Yiu, O. P. Lee, T. M. Weiss, C. Wang, J. M. J. Frechet, P. M. Beaujuge, and M. F. Toney, A mechanistic understanding of processing additive induced efficiency enhancement in bulk heterojunction organic solar cells, Adv. Mater., 26, 300-305 (2014).   DOI   ScienceOn
4 F. Roshan, M. Zhenghao, M. Evan, R. Fei, and S. Genevieve, Tuning the organic solar cell performance of acceptor 2,6-dialkylaminonaphthalene diimides by varying a linker between the imide nitrogen and a thiophene group, J. Phys. Chem. C, 118, 3433-3442 (2014).   DOI
5 C.-H. Hsieh, Y.-J. Cheng, P.-J. Li, C.-H. Chen, M. Dubosc, R.-M. Liang, and C.-S. Hsu, Highly efficient and stable inverted polyer solar cells intergrated with a cross-linked fullerene material as an interlayer, J. Am. Chem. Soc., 132, 4887-4893 (2010).   DOI   ScienceOn
6 Z. Xu, L.-M. Chen, G. Yang, C.-H. Huang, J. Hou, Y. Wu, G. Li, C.-S. Hsu, and Y. Yang, Vertical phase spearation in poly(3-hexylthiophene): fullerene derivative blends and its advantage for inverted structure solar cell, Adv. Func. Mater, 19, 1227-1234 (2009).   DOI
7 B. Zimmermann, H.-F. Schleiermacher, M. Niggemann, and U. Wurfel, ITO-free flexible inverted organic solar cell modules with high fill factor prepared by slot die coating, Sol. Energy Mater. Sol. Cells, 95, 1587-1589 (2011).   DOI
8 H. I. Kim, T. T. T. Bui, G.-W. Kim, G. Kang, W. S. Shin, and T. Park, A benzodithiophene-based novel electron transport layer for a highly efficient polymer solar cell, ACS, Appl. Mater., Interfaces, dx.doi.org/10.1021/am503419r (2014).   DOI
9 S.-W. Cho, Y. T. Kim, W. H. Shim, S.-Y. Park, K.-D. Kim, H. O. Seo, N. K. Dey, J.-H. Lim, Y. Jeong, K. H. Lee, Y. D. Kim, and D. C. Lim, Influence of surface roughness of aluminum doped zinc oxide buffer layers on the performance of inverted organic solar cells, Appl. Phys. Lett., 98, 023102 (2011).   DOI   ScienceOn
10 D. C. Lim, W. H. Shim, K.-D. Kim, H. O. Seo, J.-H. Lim, Y. Jeong, Y. D. Kim, and K.H. Lee, Spontaneous formation of nanoripples on the surface of ZnO thin films as hole-blocking layer of inverted organic solar cells, Sol. Energy Mater. Sol. Cells, 95, 3036-3040 (2011).
11 H. O. Seo, S.-Y. Park, W. H. Shim, K.-D. Kim, K. H. Lee, M. Y. Jo, J. H. Kim, E. Lee, D.-W. Kim, Y. D. Kim, and D. C. Lim, Ultrathin $TiO_2$ films on ZnO electron collecting layers of inverted organic solar cell, J. Phys. Chem. C, 115, 21515-21520 (2011).
12 S. Cho, K.-D. Kim, J. Heo, J. Y. Lee, G. Cho, B. Y. Seo, Y. D. Kim, Y. S. Kim, S.-Y. Choi, and D. C. Lim, Role of additional PCBM layer between ZnO and photoactive layers in inverted bulk-heterojunction solar cells, Sci. Rep., 4, 4306 (2014).
13 H.-Y. Park, D. Lim, K.-D. Kim, and S.-Y. Jang, Performance optimization of low-temperature annealed solution processable ZnO buffer layers for inverted polymer solar cells, J. Mater. Chem. A, 1, 6327-6334 (2013).   DOI
14 K.-D. Kim, D. C. Lim, J. Hu, J.-D. Kwon, M.-G. Jeong, H. O. Seo, J. Y. Lee, K.-Y. Jang, J.-H. Lim, K. H. Lee, Y. Jeong, Y. D. Kim, and S. Cho, Surface modification of a ZnO electron collecting layer using atomic layer deposition to fabricate high performing inverted organic photovoltaics, ACS Appl. Mater. Interface, 5, 8718-8723 (2013).   DOI
15 K.-D. Kim, D. C. Lim, H. O. Seo, J. Y. Lee, B. Y. Seo, D. J. Lee, Y. Song, S. Cho, J.-H. Lim, and Y. D. Kim, Enhancement performance of organic photovoltaics by $TiO_2$-interlayer with precisely controlled thickness between ZnO electron collecting and active layers, Appl. Surf. Sci., 279, 380-383 (2013).   DOI
16 S.-Y. Park, H. O. Seo, K.-D. Kim, J. E. Lee, J.-D. Kwon, Y. D. Kim, and D. C. Lim, Organic photovoltaics with high stability sustained for 100 days without encapsulation fabricated using atomic layer deposition, Phys. Status Sol. RRL, 6, 196-198 (2012).   DOI
17 M.-G. Jeong, H. O. Seo, D. H. Kim, K.-D. Kim, E. J. Park, Y. D. Kim, and D. C. Lim, Initial stage of photoinduced oxidation of poly(3-hexylthiophene-2,5-diyl) layers on ZnO under dry and humid air, J. Phys. Chem. C, 118, 3483-3439 (2014).   DOI
18 H. O. Seo, M.-G. Jeong, K.-D. Kim, D. H. Kim, Y. D. Kim, and D. C. Lim, Studies of degradation behaviors of poly(3-hexylthiophene) layers by X-ray photoelectron spectroscopy, Surf. Interface Anal., 46, 544-549 (2014).   DOI
19 H. Y. Park, D. Lim, S.-H. Oh, P.-H. Kang, G. Kwak, and S.-Y. Jang, Inverted-structure polymer solar cells fabricated by sequential spraying of electron transport and photoactive layers, Org. Electron., 15, 2337-2345 (2014).   DOI
20 W. H. Shim, S.-Y. Park, M. Y. Park, H. O. Seo, K.-D. Kim, Y. T. Kim, Y. D. Kim, J.-W. Kang, K. H. Lee, Y. Jeong, Y. D. Kim, and D. C. Lim, Multifunctional SWCNT-ZnO nanocomposites for enhancing performance and stability of organic solar cells, Adv. Mater., 23, 519-522 (2011).   DOI
21 D. C. Lim, K.-D. Kim, S.-Y. Park, E. M. Hong, H. O. Seo, J. H. Lim, K. H. Lee, and Y. Jeong, C. Song, E. Lee, Y. D. Kim, and S. Cho, Toward fabrication of high performing organic photovoltaics: new donor polymer, atomic layer deposited thin buffer layer and plasmonic effects, Energy Environ. Sci., 5, 9803-9807 (2012).   DOI   ScienceOn