• Title/Summary/Keyword: 산화 막

Search Result 1,891, Processing Time 0.027 seconds

Nano-size Study of Surface-modified Ag Anode for OLEDs (표면처리에 의한 유기발광소자(OLED)용 Ag 전극의 Nano-size 효과 연구)

  • Kim, Joo-Young;Kim, Soo-In;Lee, Kyu-Young;Kim, Hyeong-Keun;Jun, Jae-Hyeok;Jeong, Yun-Jong;Kim, Mu-Chan;Lee, Jong-Rim;Lee, Chang-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.1
    • /
    • pp.12-16
    • /
    • 2012
  • Although silver is used for T-OLED (Top emitting organic Light-Emitting Diode) as reflective anode, it is not an ideal material due to its low work function. Thus, we study the effect of annealing and atmospheric pressure plasma treatment on Ag film that increases its work function by forming the thin silver oxide layer on its surface. In this study, we deposited silver on glass substrate using RF sputtering. Then we treated the Ag samples annealing at $300^{\circ}C$ for 30 minutes in atmosphere or treating the atmospheric plasma treatment for 30, 60, 90, 120s, respectively. We measured the change of the mechanical properties and the potential value of surface with each one at a different treatment type and time. We used nano-indenter system and KPFM (Kelvin Probe Force Microscopy). KPFM method can be measured the change of surface potential. The nanoindenter results showed that the plasma treatment samples for 30s, 120s had very low elastic modulus, hardness and Weibull modulus. However, annealed sample and plasma treated samples for 60s and 90s had better mechanical properties. Therefore, plasma treatment increases the uniformity thin film and the surface potential that is very effective for the performace of T-OLED.

Effect of Reaction Temperature on the Geometry of Carbon Coils Formed by SF6 Flow Incorporation in C2H2 and H2 Source Gases (SF6-C2H2-H2 기체에 의해 생성된 탄소 코일 기하구조의 반응온도 효과)

  • Kim, Sung-Hoon
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.1
    • /
    • pp.48-54
    • /
    • 2012
  • Carbon coils could be synthesized on nickel catalyst layer-deposited silicon oxide substrate using $C_2H_2$ and $H_2$ as source gases and SF6 as an additive gas under thermal chemical vapor deposition system. The geometries of as-grown carbon materials were investigated with increasing the reaction temperature as the increment of $25^{\circ}C$ from $650^{\circ}C$ up to $800^{\circ}C$. At $650^{\circ}C$, the embryos for carbon coils were formed. With increasing the reaction temperature to $700^{\circ}C$, the coil-type geometries were developed. Further increasing the reaction temperature to $775^{\circ}C$, the development of wave-like nano-sized coils, instead of nano-sized coils, and occasional appearance of micro-sized carbon coils could be observed. Fluorine in $SF_6$ additive may shrink the micro-sized coil diameter via the reduction of Ni catalyst size by fluorine's etching role. Finally, the preparation of the micro-sized carbon coils having the smaller coil diameters, compared with the previously reported ones, could be possible using $SF_6$ additive.

Removal of Color and non-biodegradable organic matter from biologically treated effluent by coagulation. (응집에 의한 생물학적 처리수의 색도 및 난분해성 유기물 제거)

  • Seo, Tae-Gyeong;Park, Sang-Min;Park, No-Baek;Jeon, Hang-Bae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.859-863
    • /
    • 2008
  • 축산폐수, 침출수 등의 고농도 폐수를 생물학적으로 처리할 경우 최종 방류수는 강한 색도를 띠며 고분자량의 유기물질을 다량 함유한다. 이는 생물학적으로 분해하기 어려운 유기성 복합체와 생화학적 반응에 의한 중간생성물로 색도를 띠는 천연유기물질(NOM)을 포함한다. 생물학적 처리수의 색도는 심미적인 불안감, 방류수역의 수질오염 및 공중보건상의 잠재적 위해성을 갖는다. 또한, 수자원 이용측면에서 정수처리공정에서의 약품투입량 증가와 특히, 소독부산물 생성이라는 잠재적 문제점이 뒤따른다. 따라서 이러한 문제점을 해소하기 위한 생물학적 2차 처리수의 후속처리가 요구되며, 실제로 난분해성 유기물과 색도를 제거하기 위한 흡착, 막 분리, 고급산화(AOP) 및 화학적 응집 등의 물리-화학적 공정에 대한 연구가 수행되어왔다. 특히, 화학적 응집은 무기응집제 또는 고분자중합체(Polymer)를 이용하여 콜로이드성 입자와 색도를 띠는 난분해성 유기물을 전기적 불안정화를 유도함으로서 흡착 및 응집과정을 통해 제거하는 공정으로 많은 연구자들에 의해 연구되어왔다. 그러나 난분해성 유기물과 색도제거는 대상원수의 성상과 화학적 특성 등에 따라 각각의 제거효율과 최적 운전조건이 상이하게 나타난다. 화학적 응집공정은 비교적 높은 제거효율을 보이지만, 운전 및 유지관리의 기술적 어려움, 경제적 비효율성 등으로 인하여 적용에 어려움을 겪고 있는 실정이다. 본 논문에서는 생물학적 혐기-호기성 공정에서 방류되는 축산폐수의 2차 처리수를 대상으로 화학적 응집에 의한 색도 및 난분해성 유기물의 제거거동을 고찰하였다. 대상 처리수의 $TCOD_{Cr}$ 농도는 평균 410 mg/L인 반면, $BOD_5$는 7-15 mg/L 범위로 난분해성 유기물을 다량 함유하고 있음을 알 수 있었다. 이에 황산알루미늄(Aluminium sulfate; $Al_2(SO_4){\cdot}14H_2O$)과 염화철(ferric chloride)의 무기응집제를 이용하여 자 테스트(jar test)를 수행한 결과, 동일한 응집제 주입량에서 염화철의 유기물 제거 효율이 높은 것으로 나타났다. 황산알루미늄과 염화철의 경우 각각의 응집제 주입율 5.85mM에서 89%, 7.03mM에서 97.5%의 최대 유기물 제거효율을 보여주었으며, 이 때 최종 pH는 4.0-5.6 범위이었다. 한편, 대상 원수 내의 콜로이드성 입자 또는 용존성 유기물의 작용기(functional group)는 일반적으로 음으로 하전 되어 있어 응집에 의해 잘 제거되지 않는 특성을 가지고 있다. 따라서 과량의 응집제를 주입하여 다가의 양이온성 금속염을 흡착시켜 전기적으로 중화시키고, 생성된 침전성 수화물 내에 포획 또는 여과시켜 제거하게 된다. 이 때, 금속염 수화종의 전하밀도가 응집효율에 영향을 주는 것으로 알려져 있는데, 다가의 양이온은 전기적 이중층(Double layer) 압축에 의한 불안정화를 향상시킬 수 있기 때문에다. 또한, 2가 금속염은 색도유발물질과 흡착하여 humate 또는 fulvate 등의 착화합물(complex)을 형성시켜 응집효율을 향상시킬 수 있다. 따라서 본 연구에서는 생물학적 2차 처리수의 화학적 응집처리에 있어서 알루미늄염 등의 다가이온 첨가가 응집에 미치는 영향을 관찰하고, 후속되는 플록형성 및 침전공정에 의한 제거효율을 비교, 평가함으로써 2차 처리수로부터 난분해성 유기물과 색도를 보다 효과적이고 경제적으로 제거할 수 있는 최적인자를 도출하고자 하였다.

  • PDF

Isolation and Characterization of Antioxidative Peptides from Enzymatic Hydrolysates of Yellowfin Sole Skin Gelatin (가자미피 젤라틴 가수분해물로부터 항산화성 펩티드의 분리${\cdot}$정제 및 특성)

  • KIM Se-Kwon;LEE Hyun-Chel;BYUN He-Guk;JEON Yon-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.2
    • /
    • pp.246-255
    • /
    • 1996
  • To develop a natural antioxidative peptide, the gelatin was extracted from fish (Yellowfin sole) skin by hot $water(50^{\circ}C)$ extraction method and hydrolyzed with Alcalase, pronase and collagenase through a continuous 3-step membrane reactor. Each step enzymatic hydrolysates were determined the antioxidative activity and their synergistic effects, compared with $\alpha-tocopherol$ and butylated hydroxytoluene (BHT). Also, we tried to investigate the antioxidative disposition of peptide which was successfully separated by gel filtration, ion-exchange chromatography, and HPIC in cultured rat hepatocytes intoxicated with tert-butyl hydroperoxide (TBHP). Second step enzymatic hydrolysate (SSEH) among all hydrolysates and $\alpha-tocoperol$ was showed the strongest antioxidative activity. The optimum concentration of antioxidative activity for SSEH was $1\%(w/w)$ in linoleic acid. The synergistic effects were increased in using the hydrolysate with tocopherol and BHT. In the presence of the peptide isolated from SSEH, supplemented hepatocytes exposed to TBHP showed that delayed cell killing and decreased significantly the lipid peroxidation, compared with hepatocytes not cultured with isolated peptide.

  • PDF

Characterization of the Dependence of the Device on the Channel Stress for Nano-scale CMOSFETs (Nano CMOSFET에서 Channel Stress가 소자에 미치는 영향 분석)

  • Han In-Shik;Ji Hee-Hwan;Kim Kyung-Min;Joo Han-Soo;Park Sung-Hyung;Kim Young-Goo;Wang Jin-Suk;Lee Hi-Deok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.3 s.345
    • /
    • pp.1-8
    • /
    • 2006
  • In this paper, reliability (HCI, NBTI) and device performance of nano-scale CMOSFETs with different channel stress were investigated. It was shown that NMOS and PMOS performances were improved by tensile and compressive stress, respectively, as well known. It is shown that improved device performance is attributed to the increased mobility of electrons or holes in the channel region. However, reliability characteristics showed different dependence on the channel stress. Both of NMOS and PMOS showed improved hot carrier lifetime for compressive channel stress. NBTI of PMOS also showed improvement for compressive stress. It is shown that $N_{it}$ generation at the interface of $Si/SiO_2$ has a great effect on the reliability. It is also shown that generation of positive fixed charge has an effect in the NBTI. Therefore, reliability as well as device performance should be considered in developing strained-silicon MOSFET.

Effect of Co Interlayer on the Interfacial Reliability of SiNx/Co/Cu Thin Film Structure for Advanced Cu Interconnects (미세 Cu 배선 적용을 위한 SiNx/Co/Cu 박막구조에서 Co층이 계면 신뢰성에 미치는 영향 분석)

  • Lee, Hyeonchul;Jeong, Minsu;Kim, Gahui;Son, Kirak;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.3
    • /
    • pp.41-47
    • /
    • 2020
  • The effect of Co interlayer on the interfacial reliability of SiNx/Co/Cu thin film structure for advanced Cu interconnects was systematically evaluated by using a double cantilever beam test. The interfacial adhesion energy of the SiNx/Cu thin film structure was 0.90 J/㎡. This value of the SiNx/Co/Cu thin film structure increased to 9.59 J/㎡.Measured interfacial adhesion energy of SiNx/Co/Cu structure was around 10 times higher than SiNx/Cu structure due to CoSi2 reaction layer formation at SiNx/Co interface, which was confirmed by X-ray photoelectron spectroscopy analysis. The interfacial adhesion energy of SiNx/Co/Cu structure decreased sharply after post-annealing at 200℃ for 24 h due to Co oxidation at SiNx/Co interface. Therefore, it is required to control the CoO and Co3O4 formation during the environmental storage of the SiNx/Co/Cu thin film to achieve interfacial reliability for advanced Cu interconnections.

Energy Efficiency Evaluation of Publicly Owned Wastewater Utilities (공공하수처리장의 에너지 소비현황 및 효율성 평가)

  • Cho, Eulsaeng;Han, Dae Ho;Ha, Jongsik
    • Journal of Environmental Policy
    • /
    • v.11 no.4
    • /
    • pp.85-105
    • /
    • 2012
  • In this paper, the energy efficiency of wastewater utilities was evaluated to explore ways to save energy via operational measures. The correlation of each wastewater characteristic parameter to energy was assessed to find a set of parameters that explained most of the variations in energy use among utilities. The results show that increases in inflow, influent COD concentration, and ratio of advanced treatment generally increased the energy use. On the other hand, increases in load factor (influentaverage flow/design flow) reduced the energy use. In the regression analysis, the energy efficiency was highest in the A2O advanced process. On the other hand, the membrane process (among the advanced processes) and the contacted aeration process (among the secondary processes) require more efforts in saving energy. However, the data base system related to energy use must be supplemented in order for more accurate analysis of energy consumption in wastewater treatment facilities. In particular, i) electricity consumption of relay pumps and, ii) energy usage per unit process, iii) pump power usage to discharge treated wastewater in a long distance, if necessary, and iv) alternative energy production and utilization status must be recorded. By utilizing the results of the analysis conducted in this study, it is possible to quantify a level of energy savings needed and establish customized energy saving measures to achieve a certain target level for benchmarking a successful case of wastewater utilities.

  • PDF

Effects of Shading Treatment on Photosynthetic Activity of Acanthopanax senticosus (차광처리가 가시오갈피의 광합성 활성에 미치는 영향)

  • Kim, Pan-Gi;Lee, Kab-Yeon;Hur, Seong-Doo;Kim, Sun-Hee;Lee, Eun-Ju
    • The Korean Journal of Ecology
    • /
    • v.26 no.6
    • /
    • pp.321-326
    • /
    • 2003
  • This study was conducted to investigate and effects of shading treatment on photosynthetic activity of Acanthopanax senticosus. We investigated plant growth, light response curve and A-Ci curve to photosynthesis of A. senticosus at 55%, 75%, and 90% shading treatment. As results, the ratio of above-ground/under-ground biomass was increased at 75% shaded condition and showed highest dry biomass. Under shaded conditions, plants had lower chlorophyll a+b content and a/b ratio and also showed thinner leave. But shaded plants showed higher leaf area and higher total leaf area per a plant. This apparently indicates adapted responses to shaded treatment. Effects of shading treatments on photosynthetic activity were higher in apparent quantum yield, carboxylation efficiency, re-phosphrylation but lower in light compensation point. These results suggested that higher photosynthesis rates in shaded treatments were due to activated carboxylation efficiency. Shading treatment had lower water use efficiency thatn controls but still higher than other tree species.

Structural Analysis for Constructing a Balloon Type Extracoporeal Membrane Oxygenator using CFD Analysis (CFD 해석을 이용한 Balloon형 인공심폐기 설계를 위한 구조적 해석)

  • Park, Young-Ran;Shim, Jeong-Yeon;Kim, Gi-Beum;Kim, Shang-Jin;Kang, Hyung-Sub;Kim, Jin-Shang;Kim, Min-Ho;Hong, Chul-Un;Kim, Seong-Jong
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.238-243
    • /
    • 2011
  • In this study, we attempted a structural analysis in order to design a balloon type extracorporeal membrane oxygenator that can induce blood flow without using blood pumps for the purpose of complementing the weakness in the existing extracorporeal membrane oxygenator. To analyze the flow characteristic of the blood flow within the virtual model of extracorporeal membrane oxygenator, computational fluid dynamics(CFD) modeling method was used. The operating principle of this system is to make the surface of the extracorporeal membrane oxygenator keep contracting and dilating regularly by applying pressure load using a balloon, and the 'ime Function Value'that changes according to the time was applied by calculating a half cycle of sine waveform and a cycle of sine.waveform Under the assumption that the uni-directional blood flow could be induced if the balloon type extracorporeal membrane oxygenator was designed as per the method described above, we conducted a structural analysis accordingly. We measured and analyzed the velocity and pressure of blood flow at both inlet and outlet of the extracorporeal membrane oxygenator through CFD simulation. As a result of the modeling, it was confirmed that there was a flow in accord with the direction of the blood by the contraction/dilation. With CFD simulation, the characteristics of blood flow can be predicted in advance, so it is judged that this will be able to provide the most optimized design in producing an extracorporeal membrane oxygenator.

Optimal Design of VCO Using Spiral Inductor (나선형 인덕터를 이용한 VCO 최적설계)

  • Kim, Yeong-Seok;Park, Jong-Uk;Kim, Chi-Won;Bae, Gi-Seong;Kim, Nam-Su
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.5
    • /
    • pp.8-15
    • /
    • 2002
  • We optimally designed the VCO(voltage-controlled oscillator) with spiral inductor using the MOSIS HP 0.5${\mu}{\textrm}{m}$ CMOS process. With the developed SPICE model of spiral inductor, the quality factor of spiral inductor was maximized at the operating frequency by varying the layout parameters, e.g., metal width, number of turns, radius, space of the metal lines. For the operation frequency of 2㎓, the inductance of about 3nH, and the MOSIS HP 0.5 CMOS process with the metal thickness of 0.8${\mu}{\textrm}{m}$, oxide thickness of 3${\mu}{\textrm}{m}$, the optimal width of metal lines is about 20${\mu}{\textrm}{m}$ for the maximum Quality factor. With the optimized spiral inductor, the VCO with LC tuning tank was designed, fabricated and measured. The measurements were peformed on-wafer using the HP8593E spectrum analyzer. The oscillation frequency was about 1.610Hz, the frequency variation of 250MHz(15%) with control voltage of 0V - 2V, and the phase noise of -108.4㏈c(@600KHz) from output spectrum.