• 제목/요약/키워드: 산화환원환경

검색결과 363건 처리시간 0.025초

원전기기용 니켈합금강의 화학제염용액에 따른 부식손상 특성 규명 (Characterization on corrosion damage of nickel alloy for nuclear energy instrument by chemical decontamination solution)

  • 박일초;양예진;정광후;이정형;한민수;김성종
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.135-135
    • /
    • 2017
  • 제염기술은 원자력발전소의 순환계통장치 및 기기류의 방사성 오염물질을 제거하는 기술이다. 현재 국내 원전의 설계 수명 및 유지보수 시기가 도래함에 따라, 작업 전 작업자의 방사선 피사량을 극소화하기 위한 제염 기술이 주목을 받고 있다. 제염 방법에는 크게 기계적 제염과 화학약품을 사용하는 화학제염이 있다. 그 중 화학제염은 복잡한 구조의 제염 대상물에 대한 큰 효과 및 간단한 공정 때문에 주로 사용되고 있다. 제염 시 방사성 산화물과 오염성분을 제거하기 위해 강산 또는 강알칼리의 화학용액이 사용된다. 강한 화학약품을 사용함으로써 큰 제염효과를 얻을 수 있는 반면, 금속 재료의 부식에 대한 구동력도 커지게 된다. 금속 재료의 경우, 강한 부식성 환경에서 공식(pitting corrosion) 및 입계부식(intergranular corrosion)형태의 손상이 크게 발생하기 때문에, 제염공정 시 사용되는 화학용액에 대한 재료의 건전성 검증이 반드시 필요하다. 본 연구에서는 원전기기용 재료인 니켈합금강 Inconel600의 화학제염 시 시험공정 3가지에 대한 부식손상 특성을 규명하였다. 산화공정은 $HMnO_4$ 실험용액을 공통으로 사용하였으며, 산화공정 종료 후 환원공정은 각 시험공정에 따라 환원공정 1은 2000ppm $H_2C_2O_4$, 환원공정 2는 1500ppm $H_2C_2O_4$ + 500ppm $H_8C_6O_7$, 그리고 환원공정 3은 3000ppm $H_2C_2O_4$ 실험용액을 각각 투입하여 수행하였다. 산화, 환원공정을 1Cycle로 하여 온도 $75^{\circ}C$로 유지된 용액에 각 2시간씩 침적하였다. 각 시험공정 별로 총 5Cycle을 실시하였다. 각 시험공정 Cycle종료 후 시험편을 취외하여 무게감량측정, SEM(Scanning electron microscope)분석, 3D현미경분석 그리고 타펠분극 실험을 실시하였다. 각 분석결과를 토대로 하여, 니켈합금 Inconel600에 대한 화학제염 시 시험공정에 따른 부식특성을 규명하였다.

  • PDF

MMPH-0 (Enterobacter aerogenes)에 의한 6가 크롬 오염 지하수의 생지화학적 정화 (Biogeochemical Remediation of Cr(VI)-Contaminated Groundwater using MMPH-0 (Enterobacter aerogenes))

  • 서현희;이성근;김강주;박은규;김영규;전철민;문지원;노열
    • 자원환경지질
    • /
    • 제45권2호
    • /
    • pp.105-119
    • /
    • 2012
  • 오염환경에 서식하는 토착미생물은 환경정화에 중요한 역할을 담당하며 이 연구는 6가 크롬 오염 지하수에서 분리한 미생물을 이용해 반응성, 이동성, 발암성 높은 6가 크롬을 당대사 조효소인 3가 크롬으로 환원/침전시켜 경제적, 친환경적, 생지화학적 정화의 효율성을 알아보았다. 미생물 농화배양과 조성분석, 호기와 혐기환경의 6가 크롬 환원과 내성, 전자공여체별 6가 크롬 환원, 지화학적 변화, 미생물 외형과 Cr((III) 침전물의 광물특성을 연구한 결과, 분리한 MMPH-0(Enterobacter aerogenes)는 혐기/호기환경에서 6가 크롬 내성과 환원능(유기산 주입 1주 후 70%, 주입 안한 경우 4주 후 10 ~ 20%)이 있고, Eh는 미생물의 유기산 산화로 생성된 전자에 의해 산화에서 환원환경, pH는 중성에서 약산성으로 변화되어 $Cr(OH)_3$/Cr(III)침전물이 형성되었다. SEM/TEM-EDS 결과 $2{\sim}5{\mu}m$ 막대형 미생물과 세포 밖 Cr(III) 침전물은 지화학적 환경변화와 유기산 산화에 따른 전자공여에 의한 환원의 근거가 된다. 지화학적 촉매제 토착미생물의 활성화로 산화환원에 민감한 중금속 오염 지하수 정화에 효율적 기술 응용이 기대된다.

흑운모 및 황철석에 의한 6가 크롬의 환원 반응속도와 반응기작 (Kinetics and mechanism of chromate reduction by biotite and pyrite)

  • 전철민;김재곤;문희수
    • 자원환경지질
    • /
    • 제36권1호
    • /
    • pp.39-48
    • /
    • 2003
  • 본 연구에서는 황철석과 흑운모를 이용한 회분식반응조실험(batch reactor experiment)을 통하여 수용성 Cr(Ⅵ)의 제거 및 반응속도를 살펴보았으며 이에 따른 산화환원 반응기작을 고찰하였다. 황철석 실험군이 흑운모실험 군에 비해 산화환원반응속도가 100배정도 빨랐으며, pH 3의 실험군이 pH 4 실험군에 비해 Cr(III)으로의 환원반응속도가 빠르게 나타났다. 황철석 실험군에서 Cr(Ⅵ) 초기농도치 90%이상이 제거되는데 걸리는 시간은 pH가 4일때 4시간, pH가 3일 때 40분 이내였다. 반면에, 흑운모 실험군의 경우 pH가 3인 조건에서도 Cr(Ⅵ) 초기농도의 90%이상이 제거되는데 400시간 이상이 걸렸다. 모든 조건에서 Cr(III)치 농도는 초기에 증가하는 경향을 보이다가 일정시간이 지나면 안정한 농도로 고정되었다. 산성의 반응용액에서 Cr(Ⅵ)의 환원반응속도는 이 두 광물이 포함하고 있는 2가 철의 해리속도와 관련이 있음을 의미한다. pH 4의 조건인 실험군에서는 용액 내 Cr(Ⅵ)이 Cr(III)으로 환원되고 Fe(II)가 Fe(III)로 산화된 후, (Cr, Fe)(OH)$_3$$_{ (s)}$와 같은 침전물을 생성하여 상대적으로 용액내 Cr(III)과 Fe(III)농도가 낮은 것으로 여겨진다. pH 3의 실험군을 화학양론적 고찰하였으며, 흑운모의 실험에서는 수용성 Fe(II)의 감소된 양과 Cr(Ⅵ)의 환원된 양의 이론적인 몰비가 [3Fe(II) : 1Cr(Ⅵ)]임에도 그 몰 비가 약 1:1로서 1 mole의 Cr(Ⅵ)을 환원시키는데 Fe(II)이 적게 소비되었으며, 이는 광물에서 해리되는 Fe(II)에 의한 Cr(Ⅵ)의 환원뿐만 아니라 흑운모 구조 내 Fe(II)이 용액 내 Fe(III) 이온을 Fe(II) 이온으로 환원시키는 불균질산화환원반응이 발생하고 이 반응으로 생성된 Fe(II) 이온이 다시 Cr(Ⅵ)의 환원반응에 기여하였기 때문이다. 그러나 황철석 실험의 경우, 그 몰비가 약 2.90:1 로서 3에 가까우며, 이는 황철석의 빠른 산화를 통하여 급속한 Fe(II) 이온이 공급됨으로서 Cr(Ⅵ)의 환원반응이 이론적 화학양론의 반응 몰비에 부합한 결과를 보인 것으로 판단된다.

울릉분지 천부 가스하이드레이트 부존지역에서의 해저지형변화에 따른 퇴적물 특성 연구 (A study of push core sediments and topographical controls around the shallow gas hydrate site in the Ulleung Basin, East Sea)

  • 천종화;이주용;김학주;강년건;남승일
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.200-202
    • /
    • 2008
  • 동해 울릉분지에서는 시추선 RemEtive를 사용하여 UBGH-X-01 가스하이드레이트 탐사가 2007년에 실시되었다. 본 연구에서는 천부 가스하이드레이트가 확인된 UBGH1-10 정점에서 무인잠수정(Quantam WROV)을 사용하여 획득된 푸쉬코어와 해저지형 분석을 수행되었다.UBGH1-10 정점은 seismic chimneys의 탄성파 특성이 발달된 지역이다. 이곳에서는 해저표면으로부터 수 m 하부에서 가스하이드레이트가 발견되었다. 이 정점은 수 m 높이의 얕은 둔덕들이 무인잠수정에 부착된 비디오 카메라에 의해서 관찰되었다.이곳에서 채취된 길이 약40 cm의 푸쉬코어는 생물교란된 뻘질 퇴적물로 구성되어 있으며, 가스하이드레이트와 chemosynthetic community는 관찰되지 않았다. 푸쉬코어는 X-ray fluorescence scanner를 사용하여 퇴적물의 26가지 원소 조성을 분석하였다. UBGH1-10 정점의 산화환원환경은 Mo/Al과 Mn/Ti 원소비를 이용하여 천부 가스하이드레이트가 발견되지 않은 UBGH1-9와 UBGH1-1 정점과 대비하였다. 이 정점의 일차생산력은 Ba/Al 원소비를 이용하여 다른 정점과 대비하였다. 천부 가스하이드레이트가 발견된 UBGH1-10 정점은 활발한 가스방출과 관련된 생물집단 서식 또는 자생광물 형성의 흔적이 발견되지 않으며, 퇴적물에서도 산화환원환경과 일차생산력의 큰 차이가 관찰되지 않는다.

  • PDF

염수계 철산화균 및 황환원균에 의한 금속 부식 및 최적 제어 방안 (Metal Corrosion Mechanism by Sulfate-reducing and Iron-oxidizing Bacteria in Saline System and its Optimal Inactivation)

  • 성은혜;한지선;김창균
    • 대한환경공학회지
    • /
    • 제30권8호
    • /
    • pp.798-807
    • /
    • 2008
  • 연안지역 주위에 설치된 각종 관망시설의 금속부식으로 인한 경제적 손실 때문에 실제적인 부식 거동을 이해하고 그것을 적절하게 조절하기 위한 부식과 관련된 원인-결과에 대한 정보를 필요로 하고 있다. 본 연구에서는 미생물 제어에 따라 금속 부식에 영향을 미치는지를 조사하기 위하여 실험실 규모로 연구를 수행하였다. 먼저 관망의 막힘 현상이 발생하는 곳(즉, I Gas Station)의 지하수를 채취한 후 16S rDNA방법으로 시료 속의 미생물 다양성을 조사하였다. 이로부터 금속을 부식시키는 거동이 관측된 미생물이 Leptothrix sp.(철산화)와 Desulfovibrio sp.(황환원)임을 알 수 있었다. 실험 결과, 철 시편의 경우 철산화 미생물에 의해 부식속도가 가장 크게 증가하였고, 반면 황환원 미생물에 의해 철침전물이 빠르게 형성되었다. 함석 시편과 스테인리스 스틸의 경우 주로 철산화 미생물이 부식뿐만 아니라 침전물 형성 속도를 증가시키는 데에도 매우 관련이 높았다. 아연 시편의 경우, 황환원 미생물이 철산화 미생물보다 더 부식에 대한 영향이 컸다. 또한 미생물 성장 제어실험에서는 염소주입이나 UV 처리는 효과적으로 미생물의 성장을 조절할 수 있었다. 그러나 미생물 제어 강도가 경계치보다 증가한다면 화학적 반응을 증가시키기 때문에 부식속도는 점차 증가하는 현상이 나타났다. 본 연구에서는 미생물 금속 부식은 미생물 종류나 금속재료에 따라 다르게 발생하며, 관련 미생물(Leptothrix sp.와 Desulfovibrio sp.)과 금속 부식 또는 침전물 생성에 높은 연관성을 가지고 있었다. 그리고 효과적인 미생물의 제어를 통해 부식 또는 침전 속도를 늦출 수 있음을 확인하였다.

시화호의 퇴적환경과 중금속오염 (Sedimentary Environments and Heavy Metallic Pollution at Shihwa Lake)

  • 현상민;천종화;이희일
    • 한국해양학회지:바다
    • /
    • 제4권3호
    • /
    • pp.198-207
    • /
    • 1999
  • 시화호 내 5개 정점에서 채취한 주상시료들을 지화학적으로 분석하여 시화방조제 건설이후 퇴적환경 및 중금속오염에 대해 연구하였다. 시화호내 퇴적환경은 유기물의 C/N비와 C/S비에 의해 무산소환경, 산화환경, 그리고 두 환경이 공존하는 지역으로 세분되었다. 산화환원환경을 지배하는 요인은 수심과 퇴적물의 공급차인것으로 사료된다. 주상시료에서 분석된 지화학적 원소중 Mn-U-Mo간의 상관관계는 각 정점간의 산화 환원환경의 지시자로 사용이 가능하다. 주상시료들의 Al과 Ti 함량은 퇴적물특성에 의해 구분되며, 5개 중금속(Cr, Ni, Cu, Zn 및 Pb)함량은 중금속에 의한 오염정도를 지시한다. 중금속의 상대적 함량은 방조제에 가까운 시화호 중심부분에서 보다 안산-반월공단에 가까운 지역에서 높게 축적되어 있다. 특히 주상시료의 표층퇴적물은 시화호 중앙부보다 시화-반월공단쪽이 약 2-8배 정도로 중금속축적이 높다.

  • PDF

실내 microcosm실험에 의한 시흥광산 및 덕음광산 주변 오염 논토양내 중금속의 지구화학적 거동 연구 (Geochemical Behavior of Metals in the Contaminated Paddy Soils around Siheung and Deokeum Mines through Laboratory Microcosm Experiments)

  • 김정현;문희수;안주성;김재곤;송윤구
    • 자원환경지질
    • /
    • 제35권6호
    • /
    • pp.553-565
    • /
    • 2002
  • 본 연구는 시흥 동연아연 및 나주 덕음 금은 폐광산 주변 오염 논토양을 대상으로 시기별 중금속의 수직적 분포 및 함량변화를 실내 microcosm실험을 통하여 조사하였으며 산화환원 환경 변화에 따른 중금속의 지구화학적 거동 양상을 평가하고자 하였다. 두 지역의 원 논토양은 광물학적 구성, 중금속 함량 및 pH와 같은 지구화학적 특성이 차이를 나타내었으며 특히 덕음에서 상대적으로 낮은 중금속 함량에 비해 높은 교환성 형태의 비율로 중금속 용출이 높을 것으로 예상되었다. 18주의 침수기간동안 microcosm토양 상하부는 산화환원 환경 차이를 유지하였으며 pH의 경우 시흥의 상하부 토양 및 덕음의 하부 토양에서는 중성-알칼리성을 유지하였으나 덕음 상부는 3.2-3.8의 강산성을 나타내었다. 용존 Fe, Mn은 상부에 비해 하부에서 높은 농도를 보여 환원성 용해현상에 의한 용출거동을 나타내었다. Pb 및 Zn는 산화환경인 상부에서 그 용출이 높게 나타나며 pH가 높은 시흥의 경우 상층수/토양 경계면에 철 및 망간이 풍부한 층이 형성되고 중금속의 이동을 억제하는 트랩역할을 하여 용출정도가 낮았다. 반면 pH가 낮은 덕읍에서는 원 토양의 상대적으로 낮은 중금속 함량에 비해 그 용출정도가 높았으며 침수 및 배수의 시기별 화학적 존재 형태의 변화도 나타났다. 강산성의 논토양에서는 침수기에 토양 상층부에서 벼작물의 중금속 흡수도가 증가할 수 있으며 배수후에는 교환성 형태의 증가로 역시 그 흡수도가 높아질 것으로 예상된다.

시추공지하수의 지화학 파라미터 측정방법 고찰

  • 유시원;박경우;고용권;정찬호
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2005년도 총회 및 춘계학술발표회
    • /
    • pp.280-283
    • /
    • 2005
  • 한국원자력연구소 내 심부시추공(YS-01, 500m)에 설치된 다중패커시스템(multi-packer system)을 이용하여 양수(pumping) 시 GL. $-457.5{\sim}-500m$ 구간의 지하수에 대한 중요한 지화학 파라미터인 pH, 산화-환원전위, 용존산소 및 전기전도도 등을 장기간 측정하였다. 이에 따르면 현장측정자료는 시간이 경과함에 따라 변화되며 장시간이 경과된 후에 안정화됨을 보여주고 있다. 특히, 산화-환원전위의 경우는 10일이 경과되었음에도 계속 변화하고 있다. 심부지하수 뿐만 아니라 일반 지하수의 경우에도 이러한 파라미터 측정 시 안정화시간에 대하여 유의하여야 할 것이다.

  • PDF

KURT 지하심부 지하수 내 토착 금속환원미생물의 종 다양성 및 철/망간의 환원과 생광물화작용 (Characterization of Microbial Diversity of Metal-Reducing Bacteria Enriched from Groundwater and Reduction/Biomineralization of Iron and Manganese)

  • 김유미;오종민;정혜연;이승엽;노열
    • 자원환경지질
    • /
    • 제47권4호
    • /
    • pp.431-439
    • /
    • 2014
  • 이 연구의 목적은 KURT(KAERI underground research tunnel) 지하수 내에 금속이온을 환원시키는 미생물의 존재 여부를 확인하고 배양하여, 이들의 활동에 따른 철과 망간 환원의 관찰과 환원물의 광물학적 특성을 연구함으로써, 금속환원미생물에 의한 산화상태로 존재하는 철과 망간의 환원과 광물 상전이 가능성을 확인하는 것이다. KURT 지하수 내 금속을 환원하는 미생물은 전자공여체로 포도당, 초산, 젖산, 개미산, 피루브산을, 전자수용체로 Fe(III)-citrate를 사용하여 농화배양 하였으며, 16S rRNA 분석을 통해 종 다양성을 확인하였다. 농화배양된 금속환원미생물에 의한 철과 망간의 환원과 생광물화작용을 알아보기 위해 전자공여체로 포도당, 초산, 젖산, 개미산, 피루브산을, 전자수용체로 철수산화물인 아카가나이트(akaganeite, ${\beta}$-FeOOH)와 망간산화물(manganese oxide, ${\lambda}-MnO_2$)을 이용하여 금속환원 실험을 실시하였다. 미생물 활동에 의해 형성된 환원물의 광물학적 특성은 SEM, EDX, XRD 분석을 통해 확인되었다. 연구 결과 KURT 지하수에서 금속을 환원하는 혐기성 미생물로는 Fusibacter, Desulfuromonas, Actinobacteria, Pseudomonas sp. 등이 확인되었고, 이 미생물들은 체외에서 철과 망간을 환원하여 이들 광물의 상전이를 확인하였다. 철(Fe)은 $Fe^{3+}$을 포함한 아카가나이트(${\beta}$-FeOOH)에서 $Fe^{2+}/Fe^{3+}$를 포함한 자철석($Fe_3O_4$)으로 환원되었고, 망간(Mn)은 $Mn^{4+}$를 포함한 망간산화물(${\lambda}-MnO_2$)에서 $Mn^{2+}$을 포함한 능망간석($MnCO_3$)으로 환원되었다. 이러한 지하 140 m의 KURT 지하수에서 서식하는 미생물들에 의해 철과 망간이 환원됨은 다른 중금속과 핵종원소의 환원 가능한 환경이 조성되었을 뿐 만 아니라, 미생물에 의하여 환원된 철의 재산화에 의해서도 주변 핵종원소가 환원될 수 있음을 의미한다. 따라서 이러한 직 간접적인 산화-환원 반응에 의해 KURT 지하수 내에서는 금속환원미생물들이 유해금속물질을 침전시켜 이동성을 줄일 수 있을 뿐만 아니라 고준위 폐기물에서 유해물질의 유출시 핵물질의 확산을 막는데 중요한 역할을 할 수 있을 것으로 사료된다.