• Title/Summary/Keyword: 산화적 세포손상

Search Result 363, Processing Time 0.03 seconds

Protective Effects of Lespedeza bicolor Extract on B16/F10 Melanoma Cell Lines Damaged by Lead Acetate, Heavy Metal Compounds (중금속 화합물인 초산납으로 손상된 B16/F10 멜라닌세포주에 대한 싸리나무 추출물의 보호 효과)

  • Seo, Young-Mi
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.53 no.4
    • /
    • pp.363-370
    • /
    • 2021
  • This study was conducted to evaluate the dermal cytotoxicity of lead acetate (LA) and other heavy metal compounds, and the protective effect of Lespedeza bicolor (LB) extract on LA-induced cytotoxicity in cultured B16-/F10 melanoma cells. The study evaluated the antioxidative effects of LB due to its electron-donating ability (EDA), inhibitory effects on melanization and improving cell viability. LA significantly decreased cell viability in a dose-dependent manner, and the XTT50 value was determined at 52.7 µM in the studied cultures. Based on the Borenfreund and Puerner's toxicity criteria, LA was estimated to be highly cytotoxic. LA-induced cytotoxicity and cell damage was reversed by the antioxidant activity of kaempferol (KAE), thereby remarkably improving cell viability. A study of the protective effects of the LB extract on LA-induced cytotoxicity showed that the LB extract remarkably increased cell viability in the LA-treated group, and also inhibited the EDA and the total amount of melanin. The above results suggest oxidative stress-mediated cytotoxicity of LA. In the study, LB extract effectively prevented LA-induced cytotoxicity via its antioxidative activity and inhibition of melanization. In conclusion, natural resources like LB extracts may be useful agents for the prevention of oxidative stress-mediated cytotoxicity and melanization by heavy metallic compounds such as LA.

Inhibitory Effect of Red Bean (Phaseolus angularis) Hot Water Extracts on Oxidative DNA and Cell Damage (팥(Phaseolus angularis) 열수 추출물의 산화적 DNA와 세포 손상 억제 효과)

  • Park, Young-Mi;Jeong, Jin-Boo;Seo, Joo-Hee;Lim, Jae-Hwan;Jeong, Hyung-Jin;Seo, Eul-Won
    • Korean Journal of Plant Resources
    • /
    • v.24 no.2
    • /
    • pp.130-138
    • /
    • 2011
  • In this study, we evaluated the protective effects of the hot water extract from red bean (Phaseolus angularis) against oxidative DNA and cell damage induced by hydroxyl radical. The antioxidant activities were evaluated by hydroxyl radical and hydrogen peroxide scavenging assay, and $Fe^{2+}$-chelating assay. Although the extract with hot water didn't scavenge the hydroxyl radical, it removed and chelated hydrogen peroxide and ferrous iron necessary for the induction of hydroxyl radical by 71% and 64% at 200 ${\mu}g/ml$, respectively. Its protective effect on oxidative DNA damage was carried using ${\Psi}$X-174 RF I plasmid DNA comparing the conversion level of supercoiled form of the plasmid DNA into open-circular form and linear form and the expression level of phospho-H2AX in NIH 3T3 cells. In ${\Psi}$X-174 RF I plasmid DNA cleavage assay, it inhibited oxidative DNA damage by 96% at 200 ${\mu}g/ml$. Also, it decreased the expression of phospho-H2AX by 50.1% at 200 ${\mu}g/ml$. Its protective effect against oxidative cell damage was measured by MTT assay and the expression level of p21 protein in NIH 3T3 cells. In MTT assay for the protective effect against the oxidative cell damage, it inhibited the oxidative cell death and the abnormal cell growth induced by hydroxyl radical. Also, it inhibited p21 protein expression by 98% at 200 ${\mu}g/ml$. In conclusion, the results of the present studies indicate that hot water extract from red bean exhibits antioxidant properties and inhibit oxidative DNA damage and the cell death caused by hydroxyl radical.

Protection of ROS-induced cytotoxicity and DNA damage by the extract of Alpinia of ficinarum (양강추출물의 활성산소종 유도 세포독성과 DNA 손상에 대한 방어효과)

  • 이승철;신경승;허문영
    • Journal of Food Hygiene and Safety
    • /
    • v.17 no.2
    • /
    • pp.106-116
    • /
    • 2002
  • The 70% ethanol extract of Alpinia officinarum and its major flavonoid, galangin showed strong antioxidative effect on the lipid peroxidation of ethyl linolate with Fenton's reagent and free radical scavenging effect to DPPH radical generation. However, they did not reveal any pro-oxidant effect on bleomycin-Fe(III) dependent DNA degradation. They also showed the protective effect against $H_2O$$_2$, KO$_2$ or UV-induced cytotoxicity in mammalian cells. They also showed the suppressive effect of DNA damage induced by $H_2O$$_2$ or KO$_2$ with dose-dependent manner in single cell gel electrophoresis(SCGE) assay. On the other hand, they have an anticlastogenic effect against adriamycin-induced micronucleated reticulocyte in peripheral blood of mice. These results suggest that the mechanism of inhibition by 70% ethanol extract of Alpinia officinarum and galangin against reactive oxygen species (ROS)-induced genotoxicity or cytotoxicity is due, at least partly, to their antioxidative and free radical scavenging properties without pro-oxidant effect. All these results indicate that 70% ethanol extract of Alpinia officinarum and galangin may be useful for protection against ROS-induced cytotoxicity and DNA damage.

Hepatoprotective Effects of the Extracts of Alnus japonica Leaf on Alcohol-Induced Liver Damage in HepG2/2E1 Cells (알코올로 유도된 간손상 모델 HepG2/2E1 세포에서 오리나무 잎 추출물의 간보호효과)

  • Bo-Ram Kim;Tae-Su Kim;Su Hui Seong;Seahee Han;Jin-Ho Kim;Chan Seo;Ha-Nul Lee;Sua Im;Jung Eun Kim;Ji Min Jung;Do-Yun Jeong;Kyung-Min Choi;Jin-Woo Jeong
    • Korean Journal of Plant Resources
    • /
    • v.37 no.2
    • /
    • pp.120-129
    • /
    • 2024
  • Alcoholic liver disease (ALD) is a significant risk factor in the global disease burden. The stem bark of the Betulaceae plant Alnus japonica, which is indigenous to Korea, has been used as a popular folk medicine for hepatitis and cancer. However, the preventive effect of Alnus japonica leaf extracts on alcohol-related liver damage has not been investigated. The objective of this study was to investigate the hepatoprotective effects of the extracts of Alnus japonica leaf (AJL) against ethanol-induced liver damage in HepG2/2E1 cells. Treatment with AJL significantly prevented ethanol-induced cytotoxicity in HepG2/2E1 cells by reducing the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). This protective effect was likely associated with antioxidant potential of AJL, as evidenced by the attenuation of reactive oxygen species (ROS) and malondialdehyde (MDA) production and restoration of the depleted glutathione (GSH) levels in ethanol-induced HepG2/2E1 cells. Our findings suggest that FCC might be considered as a useful agent in the prevention of liver damage induced by oxidative stress by increasing the antioxidant defense mechanism.

The Increase of Apoptotic Neutrophils and Phagocytic Macrophage by Germanium in Acute Lung Injury Induced by Lipopolysaccharide (LPS에 의한 급성 폐손상에서 게르마늄에 의한 호중구 세포사와 큰포식세포의 포식능 증가)

  • Lee, Yoon-Jeong;Cho, Hyun-Gug;Jeune, Kyung-Hee
    • Applied Microscopy
    • /
    • v.38 no.4
    • /
    • pp.293-306
    • /
    • 2008
  • The essential factor of acute respiratory distress syndrome (ARDS), an acute lung injury accompanied commonly by sepsis syndrome is accumulation of neutrophils in lung tissue. The study attempted to confirm whether a lung injury would be decreased with the anti-inflammatory effect of germanium by the treated germanium prior to the development of ARDS and whether nitric oxide influence in suppressing a lung injury. Test groups were divided in the following structure for experiment; CON that has been administered with sodium chloride to airway, LPS administered with endotoxin for 5 hours in the same amount and 5 hours of endotoxin administered Ge+LPS following 1 hours of pre-treated germanium. The result of a test using experimental animals, infilteration of neutrophils (p<0.001) in bronchoalveolar lavage fluid (BALF) was significantly decreased, the structure of lung tissue was preserved relatively well, and much neutrophils with distinct positive were observed on tunel staining which showed increase of apoptotic neutrophils in the pre-treated germanium group compare to the endotoxin administrated group. In observation of ultrastructural changes of cell in BALF, phagocytic alveolar macrophage was increased in alveolar space, the nucleus of most engulfed neutrophils were condensed, and some apoptosis neutrophils appears to be DNA fragmentation and effacement of cellular organelles were found in intercellular matrix in the pre-treated germanium group. However, the nitric oxide showed increase in all the groups excluding CON, and the nitric oxide effect such as degranulation diminishing of mast cells and apoptosis increase of neutrophils in the pre-treated group only. The situation appears that there was change in internal environment of the experimental animal by the pre-treated germanium before the nitric oxide is produced and the anti-inflammatory effect activated the pre-processed germanium by nitric oxide which activated following the change. Therefore, the nitric oxide created from macrophage in accordance with the pre-treated germanium appears to influence in alleviating a lung injury. Accordingly, acute lung injury is alleviated by the anti-inflammatory effect of germanium such as inhibition of neutrophils migration, induction of neutrophil apoptosis and increase of phagocytic function of phagocyte, and the nitric oxide produced from activated macrophage by germanium would influence in suppressing a lung injury.

Free radical scavenging activity and protective effect of three glycyrrhiza varieties against hydrogen peroxide-induced oxidative stress in C6 glial cells (종류별 감초의 라디칼 소거능 및 H2O2에 의한 C6 glial 세포의 산화적 스트레스 개선 효과)

  • Kim, Ji Hyun;Cho, Min Ji;Park, Chan Hum;Cho, Eun Ju;Kim, Hyun Young
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.4
    • /
    • pp.327-334
    • /
    • 2020
  • Oxidative stress is common cause of neurodegenerative diseases. The purpose of this study is to investigate the in vitro free radical scavenging activity and protective effect of three Glycyrrhiza species including Glycyrrhiza uralensis, G. glabra, and a new variety of Glycyrrihza (Shinwongam, SW) against hydrogen peroxide-induced oxidative stress in C6 glial cells. In vitro assays, radical scavenging activities of G. uralensis, G. glabra, and SW against 2,2-diphenyl-1-picrylhydrazyl, ·OH, and O2- increased as concentration-dependent manner. In addition, the SW was found to contain the highest polyphenol and flavonoid contents. The treatment of H2O2 to C6 glial cell induced oxidative stress, whereas G. uralensis, G. glabra, and SW significantly increased the cell viability as dose-dependent manner. In particular, SW exerted stronger protective effect on H2O2-induced cytotoxicity, than G. uralensis and G. glabra. Furthermore, reactive oxygen species (ROS) formation was significantly elevated by H2O2 in C6 glial cells. However, treatments of G. uralensis, G. glabra, and SW decreased ROS formation. In addition, SW decreased pro-inflammatory related protein expression levels such as inducible nitric oxide synthase and cyclooxygenase-2, compared to H2O2-treated control group. These results indicated that G. uralensis and G. glavra, especially SW, may be useful for preventing from oxidative stress-induced neuronal damage by regulating inflammatory reaction.

Effect of Whey Protein Isolate and Lactobacillus spp. Cell Extracts on Intracellular Antioxidative Activities in Human Prostate Epitherial Cells (유청단백질 및 Lactobacillus spp. 추출물이 전립선 세포 내 항산화 활성에 미치는 영향)

  • 변정열;윤영호
    • Journal of Animal Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.719-726
    • /
    • 2006
  • Bovine whey protein are rich in cysteine, which is the rate limiting amino acid for synthesis of antioxidant glutathione(GSH). Some strains of Lactobacillus caseihas been reported to contain high level of GSH in cell extracts. The objective ofthis study was to determine whether enzymatically hydrolyzed whey protein isolate(WPI) and cell extract of Lb. casei HY2782 could increase intracellular GSH concentrations and protect against oxidant induced cell death in human prostate epithelial cell line (designated as RWPE1, and PC3MMM2 cells). Treatment of RWPE1 cellsandPC3MMM2 cells with hydrolyzed WPI (500g/ml) significantly increased GSH by28.2% and38.4% respectively. Compared with control cells receiving no hydrolyzed WPI(P<0.05). hydrolyzed WPI and Lb casei HY2782 cell extracts significantly protected RWPE1 and PC3MMM2 cellsfrom oxidant induced cell death compared with controls receiving no WPI. DNA damage associated with oxidant treatment was demonstrated by single cell gel (SCG) electrophoresis.

Suppression of reactive oxygen species generation as a part of antioxidative effect of plant extracts (식물추출물 항산화효능 기전의 일부로서의 활성산소 발생 억제 효과)

  • Song, Seon Beom;Chung, Gu June;Jung, Hee Jin;Jang, Jung Yoon;Chung, Hae Young;Kim, Nam Deuk;Lee, Ji-Hyeon;Min, Kyungjin;Park, Sun Yeong;Kwak, Chung Shil;Hwang, Eun Seong
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.6
    • /
    • pp.706-714
    • /
    • 2021
  • Chemical scavenging of reactive oxygen species (ROS) is considered a major mechanism of antioxidant effects, but preventing ROS generation can be more efficient in attenuating oxidative damage. In this study, the extracts of plants, Solanum lycopersicum, Ailanthus altissima, Equisetum arvense, and Oenothera biennis, were tested to determine whether their antioxidative effects are driven by the prevention of superoxide generation from mitochondria, a major ROS generator. While all the extracts efficiently attenuated the elevation of ROS levels in human fibroblasts and inflammation-induced mice, those of S. lycopersicum, A. altissima, and O. laciniata only suppressed mitochondrial ROS generation and reduced levels of lipofuscin and lipid peroxidation. Furthermore, the extracts of A. altissima and O. laciniata extended the lifespan of fruit flies. Our results suggest that plant extracts with anti-oxidative effects differ in their ability to prevent ROS generation, which may be associated with the attenuation of oxidative damage in cells and animal tissues.

Comparison of the Cytoprotective Effects of Several Natural and Synthetic Compounds against Oxidative Stress in Human Retinal Pigment Epithelial Cells (인간 망막 색소상피 세포에서 산화적 스트레스에 대한 천연 및 합성 화합물들의 세포 보호 효과 비교)

  • Kim, Da Hye;Kim, Jeong-Hwan;Park, Seh-Kwang;Jeong, Ji-Won;Kim, Mi-Young;Nam, Soo-Wan;Lee, Hyesook;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.31 no.2
    • /
    • pp.126-136
    • /
    • 2021
  • Oxidative stress causes injury to and degeneration of retinal pigment epithelial (RPE) cells. It is involved in several retinal disorders and leads to vision loss. In the present study, we investigated the effect of 14 kinds of natural compounds and two kinds of synthetic compounds on oxidative stress-induced cellular damage in human PRE cell lines (ARPE-19). From among them, we selected five kinds of compounds, including auranofin, FK-509, hemistepsin A, honokiol, and spermidine, which have inhibitory effects against hydrogen peroxide (H2O2)-mediated cytotoxicity. In addition, we found that four kinds of compounds (excluding auranofin) have protective effects on H2O2-induced mitochondrial dysfunction. Furthermore, the expression of phosphorylation of histone H2AX, a sensitive marker of DNA damage, was markedly up-regulated by H2O2, whereas it was notably down-regulated by FK-506, honokiol, and spermidine treatment. Meanwhile, five kinds of candidate compounds had no effect on H2O2-induced intracellular reactive oxygen species (ROS) levels, suggesting that the five candidate compounds have protective effects on oxidative stress-induced cellular damage through the ROS-independent pathway. Taken together, according to the results of H2O2-mediated cellular damage―such as cytotoxicity, apoptosis, mitochondrial dysfunction, and DNA damage―spermidine and FK-506 are the natural and synthetic compounds with the most protective effects against oxidative stress in RPE. Although further studies on the identification of the mechanism responsible are required, the results of the present study suggest the possibility of using spermidine and FK-506 to suppress the risk of retinal disorders.