• Title/Summary/Keyword: 산화도

Search Result 15,477, Processing Time 0.047 seconds

Anti-inflammatory and Antioxidative Effects of Lotus Root Extract in LPS-PG-Stimulated Human Gingival Fibroblast-1 Cells (치주염 원인균 LPS-PG로 유도된 인체 치은섬유아세포에서 연뿌리 추출물에 대한 항염증 및 항산화 효과)

  • Lee, Young-Kyung;Kim, Chul Hwan;Jeong, Dae Won;Lee, Ki Won;Oh, Young Taek;Kim, Jeong Il;Jeong, Jin-Woo
    • Korean Journal of Plant Resources
    • /
    • v.35 no.5
    • /
    • pp.565-573
    • /
    • 2022
  • Gingival inflammation is one of the main causes that can be related to various periodontal diseases. Human gingival fibroblast (HGF) is the major constituent in periodontal connective tissue and secretes various inflammatory mediators, such as nitric oxide (NO) and prostaglandin E2 (PGE2), upon lipopolysaccharide stimulation. This study is aimed at investigating the anti-inflammatory and antioxidative activities of Lotus Root extract (LRE) in Porphyromonas gingivalis derived lipopolysaccharide (LPS-PG)-stimulated HGF-1 cells. The concentration of NO and PGE2, as well as their responsible enzymes, inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2), was analyzed by Griess reaction, ELISA, and western blot analysis. LPS-PG sharply elevated the production and protein expression of inflammatory mediators, which were significantly attenuated by LRE treatment in a dose-dependent manner. LRE treatment also suppressed activation of Toll-like receptor 4 (TLR4)/myeloid differentiation primary response gene 88 (MyD88) and nuclear factor-κB (NF-κB) in LPS-PG-stimulated HGF-1 cells. In addition, one of phase II enzyme, NAD(P)H quinone dehydrogenase (NQO)-1, and its transcription factor, Nuclear factor erythroid 2-related factor 2 (Nrf2), were significantly induced by LRE treatment. Consequently, these results suggest that LRE ameliorates LPS-PG-induced inflammatory responses by attenuating TLR4/MyD88-mediated NF-κB, and activating NQO-1/Nrf2 antioxidant response element signaling pathways in HGF-1 cells.

Origin and Reservoir Types of Abiotic Native Hydrogen in Continental Lithosphere (대륙 암석권에서 무기 자연 수소의 성인과 부존 형태)

  • Kim, Hyeong Soo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.313-331
    • /
    • 2022
  • Natural or native abiotic molecular hydrogen (H2) is a major component in natural gas, however yet its importance in the global energy sector's usage as clean and renewable energy is underestimated. Here we review the occurrence and geological settings of native hydrogen to demonstrate the much widesprease H2 occurrence in nature by comparison with previous estimations. Three main types of source rocks have been identified: (1) ultramafic rocks; (2) cratons comprising iron (Fe2+)-rich rocks; and (3) uranium-rich rocks. The rocks are closely associated with Precambrian crystalline basement and serpentinized ultramafic rocks from ophiolite and peridotite either at mid-ocean ridges or within continental margin(Zgonnik, 2020). Inorganic geological processes producing H2 in the source rocks include (a) the reduction of water during the oxidation of Fe2+ in minerals (e.g., olivine), (b) water splitting due to radioactive decay, (c) degassing of magma at low pressure, and (d) the reaction of water with surface radicals during mechanical breaking (e.g., fault) of silicate rocks. Native hydrogen are found as a free gas (51%), fluid inclusions in various rock types (29%), and dissolved gas in underground water (20%) (Zgonnik, 2020). Although research on H2 has not yet been carried out in Korea, the potential H2 reservoirs in the Gyeongsang Basin are highly probable based on geological and geochemical characteristics including occurrence of ultramafic rocks, inter-bedded basaltic layers and iron-copper deposits within thick sedimentary basin and igneous activities at an active continental margin during the Permian-Paleogene. The native hydrogen is expected to be clean and renewable energy source in the near future. Therefore it is clear that the origin and exploration of the native hydrogen, not yet been revealed by an integrated studies of rock-fluid interaction studies, are a field of special interest, regardless of the presence of economic native hydrogen reservoirs in Korea.

Statistical Evaluation of Moisture Resistance by Mixing Method of Recycled Asphalt Mixtures (혼합방법에 따른 순환아스팔트 혼합물의 수분저항성 통계검정 평가)

  • Kim, Sungun;Kim, Yeongsam;Jo, Youngjin;Kim, Kwangwoo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.167-176
    • /
    • 2021
  • When producing recycled asphalt mix, it is important that the old binder of reclaimed asphalt pavement(RAP) should be well melted during blending in the mixer. The recycled asphalt mix is produced by instant mixing(IM) of all materials(RAP, virgin asphalt and new aggregates) all together in the mixer. However, in the same recycled mix, the binder around RAP aggregate was found to show higher oxidation level than the binder coated around the virgin aggregate because the old binder of RAP was not rejuvenated properly while instant mixing. The partially-rejuvenated RAP binder is assumed to be a high stiffness point in IM recycled mix. In this study, the stage mixing(SM) method was introduced; blending RAP and virgin asphalt for the first stage, and then mixing all together with hot new aggregates for the second stage. To compare the effect of the two mixing methods on moisture resistance of recycled mixes, a statistical t-test was performed between SM and IM using indirect tensile strength(ITS) and tensile strength ratio(TSR). Three conditioning methods were used; a 16-h freezing and then 24-h submerging, 48-h submerging, and 72-h submerging in 60℃ water. It was found that the TSR(=ITSwet/ITSdry) values of the mixes prepared by SM was clearly higher than the IM mixes, and coefficients of variation of SM mixes were lower than the IM mixes. It was also observed that the ITSWET of SM was significantly different from the IM at α=0.05 level by statistical t-test. The ITSWET of SM mix was reduced less than the IM mix in severer conditioned mixes. Therefore, it was concluded that the stage mixing method was an important blending technique for producing better-quality of recycled asphalt mixes, which would show higher moisture resistance than the recycled mixes produced by conventional instant mixing.

Interpretation of Firing Temperature and Thermal Deformation of Roof Tiles from Ancient Tombs of Seokchon-dong in Seoul, Korea (서울 석촌동 고분군 출토 기와의 소성온도와 열변형 특성 해석)

  • Jin, Hong Ju;Jang, Sungyoon;Lee, Myeong Seong
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.671-687
    • /
    • 2021
  • This study investigated the firing temperature and thermal deformation process of roof tiles excavated from the connected stone-mound tomb in Seokchon-dong, Seoul, based on mineralogical and physical properties. A large number of roof tiles were excavated from the tomb site and some roof tiles were deformed by heat and were fired in uneven conditions. The colors of original roof tiles and their cores are mostly yellowish-brown, with high water absorption over 12%, containing fine-grained textures and some minerals such as quartz, feldspars, amphibole, and mica. It is estimated that the original roof tiles were fired below 900℃ in oxidation condition, showing loose matrices and mica layers by scanning electron microscopy. However, deformed roof tiles have the uneven surface color of reddish-brown and bluish-gray, and those cross-sections have sandwich structures in which dense reddish-brown surface and porous grey core coexist. They contained mullite and hercynite, so it was estimated to have been fired over 1,000℃, with 0.81~11% water absorption. In some samples, bloating pores by overfiring were observed, which means that they were fired at more than 1,200℃. In addition, the refirng experiments that the original roof tile was fired between 800℃ and 1,200℃ were carried out to investigate the physical and mineralogical properties of roof tiles compared to deformed ones. As a result, the water absorption decreased rapidly and the mineral phase started to change over 1,000℃. As the temperature gradually rises, the matrices are partially melted and recrystallized, resulting in similar thermal characteristics of deformed roof tiles. Therefore, the roof tiles from ancient tombs in Seokchon-dong seem to experience the secondary high temperature of 1,000 to 1,200℃ under uneven firing conditions, resulting in deformation characteristics such as shape transformation and mineral phase transition. It is considered to have been related to cremation rituals at the tombs of Seockchon-dong during the Baekje period.

A Study of Fluoride Adsorption in Aqueous Solution Using Iron Sludge based Adsorbent at Mine Drainage Treatment Facility (광산배수 정화시설 철 슬러지 기반 흡착제를 활용한 수용액상 불소 흡착에 관한 연구)

  • Lee, Joon Hak;Kim, Sun Joon
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.709-716
    • /
    • 2021
  • In this study, an adsorbent prepared by natural drying of iron hydroxide-based sludge collected from settling basin at a mine drainage treatment facility located in Gangneung, Gangwon-do was used to remove fluoride in an artificial fluoride solution and mine drainage, and the adsorption characteristics of the adsorbent were investigated. As a result of analyzing the chemical composition, mineralogical properties, and specific surface area of the adsorbent used in the experiment, iron oxide (Fe2O3) occupies 79.2 wt.% as the main constituent, and a peak related to calcite (CaCO3) in the crystal structure analysis was analyzed. It was also identified that an irregular surface and a specific surface area of 216.78 m2·g-1. In the indoor batch-type experiment, the effect of changes in reaction time, pH, initial fluoride concentration and temperature on the change in adsorption amount was analyzed. The adsorption of fluoride showed an adsorption amount of 3.85 mg·g-1 16 hours after the start of the reaction, and the increase rate of the adsorption amount gradually decreased. Also, as the pH increased, the amount of fluoride adsorption decreased, and in particular, the amount of fluoride adsorption decreased rapidly around pH 5.5, the point of zero charge at which the surface charge of the adsorbent changes. Meanwhile, the results of the isotherm adsorption experiment were applied to the Langmuir and Freundlich isotherm adsorption models to infer the fluoride adsorption mechanism of the used adsorbent. To understand the thermodynamic properties of the adsorbent using the Van't Hoff equation, thermodynamic constants 𝚫H° and 𝚫G° were calculated using the adsorption amount information obtained by increasing the temperature from 25℃ to 65℃ to determine the adsorption characteristics of the adsorbent. Finally, the adsorbent was applied to the mine drainage having a fluoride concentration of about 12.8 mg·L-1, and the fluoride removal rate was about 50%.

Rare Earth Elements (REE)-bearing Coal Deposits: Potential of Coal Beds as an Unconventional REE Source (함희토류 탄층: 비전통적 희토류 광체로서의 가능성에 대한 고찰)

  • Choi, Woohyun;Park, Changyun
    • Economic and Environmental Geology
    • /
    • v.55 no.3
    • /
    • pp.241-259
    • /
    • 2022
  • In general, the REE were produced by mining conventional deposits, such as the carbonatite or the clay-hosted REE deposits. However, because of the recent demand increase for REE in modern industries, unconventional REE deposits emerged as a necessary research topic. Among the unconventional REE recovery methods, the REE-bearing coal deposits are recently receiving attentions. R-types generally have detrital originations from the bauxite deposits, and show LREE enriched REE patterns. Tuffaceous-types are formed by syngenetic volcanic activities and following input of volcanic ash into the basin. This type shows specific occurrence of the detrital volcanic ash-driven minerals and the authigenic phosphorous minerals focused at narrow horizon between coal seams and tonstein layers. REE patterns of tuffaceous-types show flat shape in general. Hydrothermal-types can be formed by epigenetic inflow of REE originated from granitic intrusions. Occurrence of the authigenic halogen-bearing phosphorous minerals and the water-bearing minerals are the specific characteristics of this type. They generally show HREE enriched REE patterns. Each type of REE-bearing coal deposits may occur by independent genesis, but most of REE-bearing coal deposits with high REE concentrations have multiple genesis. For the case of the US, the rare earth oxides (REO) with high purity has been produced from REE-bearing coals and their byproducts in pilot plants from 2018. Their goal is to supply about 7% of national REE demand. For the coal deposits in Korea, lignite layers found in Gyungju-Yeongil coal fields shows coexistence of tuff layers and coal seams. They are also based in Tertiary basins, and low affection from compaction and coalification might resulted into high-REE tuffaceous-type coal deposits. Thus, detailed geologic researches and explorations for domestic coal deposits are required.

Association Between Suicide and Diet (자살과 식단의 연관성)

  • Eunji, Lim;Bong-Jo, Kim;Cheol-Soon, Lee;Boseok, Cha;So-Jin, Lee;Jae-Won, Choi;Young-Ji, Lee;Nuree, Kang;Dongyun, Lee
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.30 no.2
    • /
    • pp.73-79
    • /
    • 2022
  • Objectives : Suicide is a global social problem. Social burden caused by suicide is gradually increasing. Various efforts have been made to prevent suicide. Lifestyle changes to western style, especially diet changes, have increased the risk for suicide. Therefore, in this study, we discussed diet as an adjuvant treatment for suicide. Methods : In this review, we summarized the biochemical mechanism of suicide, and diet as a risk factor for suicide and diet as a protective factor through a web search. Results : In this study, biochemical mechanisms for suicide were reviewed and diet as a risk factor and diet as a protective factor for suicide were investigated. It was confirmed that neurotoxic effects such as oxidative stress and inflammation in the neural system could increase the risk of suicide. Based on results of previous studies on the relationship between suicide and diet, it was found that heavy use of alcohol, coffee, carbonated soft drink, and fast food were risk factors for suicide. Protective factors for suicide included antioxidants such as vitamin C, carotene, and anti-inflammatory agents such as omega-3 fatty acids found in seafood in large amounts. Conclusions : The only treatment for suicide is prevention. In this context, effectiveness, accessibility, and safety are important for preventing for suicide. Antioxidants and anti-inflammatory agents that are relatively safe and readily available to the public could be effective adjuvant treatments to decrease the risk of suicide. In addition, it is necessary to educate the public on reducing diets that could increase the risk of suicide

Biological Treatment of Piggery Liquid Manure by Malodor Reducing Bacteria (악취 저감용 세균에 의한 돈분뇨의 생물학적 처리)

  • Quan, Xiao-Tian;Shin, Jae-Hyeong;Wang, Yan-Qing;Choi, Min-Gyung;Kim, Sang-Min;Kim, Soo-Ki
    • Journal of Life Science
    • /
    • v.32 no.12
    • /
    • pp.971-978
    • /
    • 2022
  • Sulfur-oxidizing, ammonium-oxidizing, and nitrogen-oxidizing media were used to isolate bacteria to degrade malodor gas effectively in piggery manure or soil. Twelve different strains were isolated: Paenibacillus amylolyticus, Rhodococcus jostii, Rhodococcus qingshengii, Rhodococcus opacus, Alcaligenes faecalis, Alcaligenes faecalis, Kastia adipate, Kastia adipata, Microbacterium oxydans, Halomonas campisalis, Acinetobacter oleivorans, and Micrococcus luteus. By inoculating each strain in the piggery liquid manure by 1%, the pH in most strain treatments was maintained at 8.0. Total bacterial counts were maintained at 7.3~7.9 log CFU/ml until 15 days, and then they dropped dramatically down to 5.1~5.5 log CFU/ml. On the 30th day, the treatment group inoculated with Rhodococcus opacus SK2659 showed a relatively high level of ammonium nitrogen removal, which was 39% of that of the control group. When Rhodococcus opacus SK2659 was inoculated, H2S concentration after 100 days was 3.23% compared with the control (no inoculation), suggesting that Rhodococcus opacus SK2659 is an excellent strain for removing malodor gas. The gas production of the treatments was lower than that of the control. The total accumulated amount of gas production in most strain treatments was a quarter of the gas production compared to the control throughout the experimental periods. Acinetobacter oleivorans SK2675 showed the lowest level at 12.39% compared to the control in gas production. In conclusion, the use of mixture strains, such as Rhodococcus opacus SK2659 and Acinetobacter oleivorans SK2675 isolated in this study could increase the efficacy of malodor gas reduction in the biological treatment of piggery manure.

Mineral Precipitation and the Behavioral Changes of Trace Elements in Munkyeong Coal Mine Drainage (문경 석탄광 배수의 광물 침전 및 미량 원소의 거동 변화)

  • Shin, Ji-Hwan;Park, Ji-Yeon;Kim, Ji-Woo;Ju, Ji-Yeon;Hwang, Su-Hyeon;Kim, Yeongkyoo;Park, Changyun;Baek, YoungDoo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.355-365
    • /
    • 2022
  • Precipitation and phase transition of iron minerals in mine drainage greatly affect the behavior of trace elements. However, the precipitation of ferrihydrite, one of the major iron minerals precipitated in drainage, and the related behavior of trace elements have hardly been studied. In this study, the effects of pH change and time on mineral precipitation characteristics in mine drainage from the Munkyeong coal mine were investigated, and the behavioral changes of trace elements related to the precipitation of these minerals were studied. In the case of precipitated mineral phases, goethite was observed at pH 4, and 2-line ferrihydrite mixed with small amount of 6-line ferrihydrite was mainly identified at pH 6 or higher. In addition, it was observed that the precipitation of calcite additionally increased as the pH increased in the samples at pH 6 or higher. The occurrence of goethite was probably due to the phase change of initially precipitated ferrihydrite within a short time under the influence of low pH. Our results showed that the concentration of trace elements was strongly influenced by pH and time. With increasing time, Fe concentration in the drainage showed a abrupt decrease due to the precipitation of iron minerals, and the concentration of As existing as oxyanions in the drainage, also decreased rapidly like Fe regardless of the pH values. This decrease in As concentration was mainly due to co-precipitation with ferrihydrite, and also partly to surface adsorption on goethite at low pH in drainage. Contrary to this observation, the concentration of other trace elements, such as Cd, Co, Zn, and Ni was greatly affected by the pH regardless of the mineral species. The lower the pH value, the higher the concentration of these trace elements were observed in the drainage, and vice versa at higher pH. These results indicate that the behavior of trace elements present as cations is more greatly affected by the mineral surface charge influenced by the pH values than the type of the precipitated mineral.

Characteristics of Flue Gas Using Direct Combustion of VOC and Ammonia (휘발성 유기 화합물 및 암모니아 직접 연소를 통한 배기가스 특성)

  • Kim, JongSu;Choi, SeukCheun;Jeong, SooHwa;Mock, ChinSung;Kim, DooBoem
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.131-137
    • /
    • 2022
  • The semiconductor process currently emits various by-products and unused gases. Emissions containing pollutants are generally classified into categories such as organic, acid, alkali, thermal, and cabinet exhaust. They are discharged after treatment in an atmospheric prevention facility suitable for each exhaust type. The main components of organic exhaust are volatile organic compounds (VOC), which is a generic term for oxygen-containing hydrocarbons, sulfur-containing hydrocarbons, and volatile hydrocarbons, while the main components of alkali exhaust include ammonia and tetramethylammonium hydroxide. The purpose of this study was to determine the combustion characteristics and analyze the NOX reduction rate by maintaining a direct combustion and temperature to process organic and alkaline exhaust gases simultaneously. Acetone, isopropyl alcohol (IPA), and propylene glycol methyl ether acetate (PGMEA) were used as VOCs and ammonia was used as an alkali exhaust material. Independent and VOC-ammonia mixture combustion tests were conducted for each material. The combustion tests for the VOCs confirmed that complete combustion occurred at an equivalence ratio of 1.4. In the ammonia combustion test, the NOX concentration decreased at a lower equivalence ratio. In the co-combustion of VOC and ammonia, NO was dominant in the NOX emission while NO2 was detected at approximately 10 ppm. Overall, the concentration of nitrogen oxide decreased due to the activation of the oxidation reaction as the reaction temperature increased. On the other hand, the concentration of carbon dioxide increased. Flameless combustion with an electric heat source achieved successful combustion of VOC and ammonia. This technology is expected to have advantages in cost and compactness compared to existing organic and alkaline treatment systems applied separately.