Browse > Article
http://dx.doi.org/10.9719/EEG.2022.55.3.241

Rare Earth Elements (REE)-bearing Coal Deposits: Potential of Coal Beds as an Unconventional REE Source  

Choi, Woohyun (BK21 Institute of Earth Atmosphere Astronomy, Yonsei University)
Park, Changyun (Department of Geology, Kyungpook National University)
Publication Information
Economic and Environmental Geology / v.55, no.3, 2022 , pp. 241-259 More about this Journal
Abstract
In general, the REE were produced by mining conventional deposits, such as the carbonatite or the clay-hosted REE deposits. However, because of the recent demand increase for REE in modern industries, unconventional REE deposits emerged as a necessary research topic. Among the unconventional REE recovery methods, the REE-bearing coal deposits are recently receiving attentions. R-types generally have detrital originations from the bauxite deposits, and show LREE enriched REE patterns. Tuffaceous-types are formed by syngenetic volcanic activities and following input of volcanic ash into the basin. This type shows specific occurrence of the detrital volcanic ash-driven minerals and the authigenic phosphorous minerals focused at narrow horizon between coal seams and tonstein layers. REE patterns of tuffaceous-types show flat shape in general. Hydrothermal-types can be formed by epigenetic inflow of REE originated from granitic intrusions. Occurrence of the authigenic halogen-bearing phosphorous minerals and the water-bearing minerals are the specific characteristics of this type. They generally show HREE enriched REE patterns. Each type of REE-bearing coal deposits may occur by independent genesis, but most of REE-bearing coal deposits with high REE concentrations have multiple genesis. For the case of the US, the rare earth oxides (REO) with high purity has been produced from REE-bearing coals and their byproducts in pilot plants from 2018. Their goal is to supply about 7% of national REE demand. For the coal deposits in Korea, lignite layers found in Gyungju-Yeongil coal fields shows coexistence of tuff layers and coal seams. They are also based in Tertiary basins, and low affection from compaction and coalification might resulted into high-REE tuffaceous-type coal deposits. Thus, detailed geologic researches and explorations for domestic coal deposits are required.
Keywords
coal; rare earth elements; REE-bearing coal deposits; unconventional REE deposits; coal basins;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Dai, S., Liu, J., Ward, C.R., Hower, J.C., French, D., Jia, S., Hood, M.M. and Garrison, T.M. (2016). Mineralogical and geochemical compositions of Late Permian coals and host rocks from the Guxu Coalfield, Sichuan Province, China, with emphasis on enrichment of rare metals. Int. J. Coal Geol., v.166, p.71-95. doi: 10.1016/j.coal.2015.12.004   DOI
2 Dai, S., Luo, Y., Seredin, V.V., Ward, C.R., Hower, J.C., Zhao, L., Liu, S., Zhao, C., Tian, H. and Zou, J. (2014). Revisiting the late Permian coal from the Huayingshan, Sichuan, southwestern China: Enrichment and occurrence modes of minerals and trace elements. Int. J. Coal Geol., v.122, p.110-128. doi: 10.1016/j.coal.2013.12.016   DOI
3 Dai, S., Ren, D., Chou, C.-L., Li, S. and Jiang, Y. (2006). Mineralogy and geochemistry of the no. 6 coal (Pennsylvanian) in the Junger Coalfield, Ordos Basin, China. Int. J. Coal Geol., v.66(4), p.253-270. doi: 10.1016/j.coal.2005.08.003   DOI
4 Dai, S., Ren, D., Tang, Y., Yue, M. and Hao, L. (2005). Concentration and distribution of elements in Late Permian coals from western Guizhou Province, China. Int. J. Coal Geol., v.61(1-2), p.119-137. doi: 10.1016/j.coal.2004.07.003   DOI
5 Dai, S., Xie, P., Jia, S., Ward, C.R., Hower, J.C., Yan, X. and French, D. (2017). Enrichment of U-Re-V-Cr-Se and rare earth elements in the Late Permian coals of the Moxinpo Coalfield, Chongqing, China: Genetic implications from geochemical and mineralogical data. Ore Geol. Rev., v.80, p.1-17. doi: 10.1016/j.oregeorev.2016.06.015   DOI
6 Dai, S., Yan, X., Ward, C.R., Hower, J.C., Zhao, L., Wang, X., Zhao, L., Ren, D. and Finkelman, R.B. (2018). Valuable elements in Chinese coals: A review. International Geology Review, v.60(5-6), p.590-620. doi: 10.1080/00206814.2016.1197802   DOI
7 Dai, S., Zhou, Y., Ren, D., Wang, X., Li, D. and Zhao, L. (2007). Geochemistry and mineralogy of the Late Permian coals from the Songzo Coalfield, Chongqing, southwestern China. Sci. China Ser. D., v.50(5), p.678-688. doi: 10.1007/s11430-007-0001-4   DOI
8 Danchev, V. and Strelyanov, N. (1979). Exogenic Uranium Deposits. Formation Conditions and Examination Methods: Izdvo Atomizdat, Moscow. 248p.
9 Daukeev, S., Votsalevskiiy, E. and Pilifosov, V. (2002). Deep Structure and Mineral Resources of Kazakhstan. Oil and Gas [in Russian]. Almaty, v.3, p.110-115.
10 Eskenazy, G., Mincheva, E. and Rousseva, D. (1986). Trace elements in lignite lithotypes from the Elhovo coal basin. Doklady Bolgarskoj akademii nauk. v.39(10), p.99-101.
11 Finkelman, R.B. (1980). Modes of occurrence of trace elements in coal. University of Maryland, College Park. Ph.D. Thesis. 301p. doi: 10.3133/ofr8199
12 Hower, J.C., Ruppert, L.F. and Eble, C.F. (1999). Lanthanide, yttrium, and zirconium anomalies in the Fire Clay coal bed, Eastern Kentucky. Int. J. Coal Geol., v.39(1-3), p.141-153. doi: 10.1016/s0166-5162(98)00043-3   DOI
13 Finkelman, R. B. (1993). Trace and minor elements in coal. Organ. Geochem., p.593-607. doi: 10.1007/978-1-4615-2890-6_28
14 Gayer, R. and Rickard, D. (1994). Colloform gold in coal from southern Wales. Geology, v.22(1), p.35-38. doi: 10.1130/0091-7613(1994)022%3C0035:cgicfs%3E2.3.co;2   DOI
15 Hower, J.C., Eble, C.F., Backus, J.S., Xie, P., Liu, J., Fu, B. and Hood, M.M. (2020). Aspects of rare earth element enrichment in Central Appalachian coals. Appl. Geochem., v.120, 104676. doi: 10.1016/j.apgeochem.2020.104676   DOI
16 Kim, Y.-J., Choi, M.-K., Seo, J.-H., Kim, B.-R. and Cho, K.-H. (2020). Current Research Trends for Recovery of Rare Earth Elements Contained in Coal Ash. Resources Recycling, v.29(6), p.3-14. doi: 10.7844/kirr.2020.29.6.3   DOI
17 Ivanov, V., Katz, A.Y., Kostin, Y.P., Meitov, E. and Solov'ev, E. (1984). Economic types of natural germanium concentrations. Nedra, Moscow (in Russian). 246p.
18 Jenney, W.P. (1903). The chemistry of ore-deposition. Am. Inst. Miner. Eng. Trans., v.33, p.445-498.
19 Ketris, M.A. and Yudovich, Y.E. (2009). Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals. Int. J. Coal Geol., v.78(2), p.135-148. doi: 10.1016/j.coal.2009.01.002   DOI
20 Kim, B.-K., Cheong, C.-H. and Kim, S.-J. (1975). Stratigraphic Studies on the Lignite-bearing Strata Distributed in the Yeongil District, North Gyeongsang-Do, Korea. J. Geol. Soc. Korea, v.11, p.240-252.
21 Kislyakov, Y.M. and Shchetochkin, V. (2000). Hydrogenic ore formation. Geoinformark, Moscow, 608p.
22 Robl, T. and Bland, A. (1977). Distribution of Aluminum in Shales Associated With the Major Economic Coal Seams of Eastern Kentucky. Third Coal Refuse Disposal and Utilization Symposium, 3rd, p.97.
23 Robbins, E., Zielinski, R., Otton, J., Owen, D., Schumann, R. and McKee, J. (1990). Microbially mediated fixation of uranium, sulfur, and iron in a peat-forming montane wetland, Larimer County, Colorado. USGS Research on Energy Resources-1990 Program and Abstracts: USGS Circ., v.1060, p.70-71.
24 Qi, H., Hu, R., Su, W., Qi, L. and Feng, J. (2004). Continental hydrothermal sedimentary siliceous rock and genesis of superlarge germanium (Ge) deposit hosted in coal: a study from the Lincang Ge deposit, Yunnan, China. Sci. China Ser. D., v.47(11), p.973-984. doi: 10.1360/02yc0141   DOI
25 Rice, C., Belkin, H., Henry, T., Zartman, R. and Kunk, M. (1996). The Pennsylvanian Fire Clay tonstein of the Appalachian basinIts distribution, biostratigraphy, and mineralogy: Discussion and reply discussion-Reply. Geol. Soc. Am. Bull., v.108(1), p.121-125. doi: 10.1130/spe294-p87   DOI
26 Ruppert, L., Finkelman, R., Boti, E., Milosavljevic, M., Tewalt, S., Simon, N. and Dulong, F. (1996). Origin and significance of high nickel and chromium in the Pliocene Kosovo Basin lignite, Central Yugoslavia. Int. J. Coal Geol., v.29, p.235-258. doi: 10.1016/0166-5162(95)00031-3   DOI
27 Seredin, V. (1991). On a new type of rare earth elements' mineralization of Cenozoic coal-bearing depressions. Doklady Akademii Nauk SSSR, v.320(6), p.1446-1450.
28 Seredin, V. (1994). The first data on abnormal Niobium content in Russian coals. Dokl. Earth Sci, p.634-636.
29 Seredin, V. (1996). Rare earth element-bearing coals from the Russian Far East deposits. Int. J. Coal Geol., v.30(1-2), p.101-129. doi: 10.1016/0166-5162(95)00039-9   DOI
30 Klimanov, E.V. (2002). About mineralization in Jurassic strata of Angrensk Kaolin-Lignite deposit. Geol. Miner. Resurslar, v.2, p.23-27.
31 Korostylev, P., Andrienko, G. and Andrienko, S. (2000). Mineralization of the Sinegorsky coal field. Geology and Mining of Primorye in the Past, Present, and Future., Dal'nauka Vladivostok, p.45-47.
32 Koscheeva, I.Y., Tyutyunik, O.A., Chkhetiya, D.N. and Krigman, L.V. (2002). Osmium in coals of the Norilsk region. Proceedings of All-Russia Symposium on Geology, Genesis, and Development of Multicomponent Precious Metal Deposits. Svyaz-Print, Moscow, p.170-173.
33 Kostin, Y.P. and Meitov, E. (1972). About genesis of high-germanium coal deposits and criteria of their exploration. Izvestia Akad Nauk USSR, Geol., v.1, p.112-119.
34 Lee, H.-K., Moon, H.-S. and Oh, M.-S. (2007). Economics Mineral Deposits in Korea. Daewoo Academic Series.
35 Aide, M.T. and Aide, C. (2012). Rare earth elements: their importance in understanding soil genesis. Int. Scholarly Res. Notices, v.2012, 783876. doi: 10.5402/2012/783876   DOI
36 Dai, S., Zhang, W., Ward, C.R., Seredin, V.V., Hower, J.C., Li, X., Song, W., Wang, X., Kang, H. and Zheng, L., Wang, P. and Zhou, D. (2013). Mineralogical and geochemical anomalies of late Permian coals from the Fusui Coalfield, Guangxi Province, southern China: influences of terrigenous materials and hydrothermal fluids. Int. J. Coal Geol., v.105, p.60-84. doi: 10.1016/j.coal.2012.12.003   DOI
37 Seredin, V. (2004). Metalliferous coals: formation conditions and outlooks for development. Coal Resources of Russia, v.6, p.452-519.
38 Seredin, V.V. and Dai, S. (2012). Coal deposits as potential alternative sources for lanthanides and yttrium. Int. J. Coal Geol., v.94, p.67-93. doi: 10.1016/j.coal.2011.11.001   DOI
39 Shvets, V. and Boyarko, G.Y. (1999). On industrial value of rare earth and germanium in the main coal seams of Southern Yakutia. In Geology and Tectonic of Platforms and Orogenic Belts of the North-Eastern Asia, Yakutsk., v.2, p.186-189.
40 Ahn, J.-W., Lim, K.-M., Park, S.-W., Kim, J.-Y., Shin, H.-Y., Park, J.-K., Kim, G.-M., Kim, K.-Y., Lee, S.-H., Hong, H.-J. and Lee, M.-H. (2021). Development of Rare Earth Element Recovery Technologies based on Carbon Mineralization Technology. Korea Institute of Geoscience and Mineral Resources, 307p.
41 Andrews, M. and Fuge, R. (1986). Cupriferous bogs of the Coed y Brenin area, North Wales and their significance in mineral exploration. Appl. Geochem., v.1(4), p.519-525. doi: 10.1016/0883-2927(86)90057-0   DOI
42 Arapov, Y.A., Boitsov, V.E. and Kremchukov, G.A. (1984). Uranium Deposits of Czechoslovakia. Nedra, Moscow. 445p.
43 Arbuzov, S., Ershov, V., Potseluev, A. and Rikhvanov, L. (2000). Rare elements in coals of the Kuznetsk Basin. Kemerovo, Russia. 499p.
44 Vine, J.D. (1962). Geology of uranium in coaly carbonaceous rocks. US Geol. Surv., 356p. doi: 10.3133/pp356d
45 Lin, R., Soong, Y. and Granite, E.J. (2018). Evaluation of trace elements in US coals using the USGS COALQUAL database version 3.0. Part I: Rare earth elements and yttrium (REY). Int. J. Coal Geol., v.192, p.1-13. doi: 10.1016/j.coal.2018.04.004   DOI
46 Seredin, V.V. and Finkelman, R.B. (2008). Metalliferous coals: a review of the main genetic and geochemical types. Int. J. Coal Geol., v.76(4), p.253-289. doi: 10.1016/j.coal.2008.07.016   DOI
47 Sergeev, A.C. (1997). Uranium in fossil fuel and carboniferous rocks. Introduction in Metallogeny of Fossil Fuel and Carboniferous Rocks. Sankt-Petersburg University.
48 Sozinov, N. (1966). Uranium-germanium ore in Miocene coalbearing strata. Materialy koordinatsionnogo soveta., v.2, p.55-59.
49 Stone, R.W. (1912). Coal near the black hills Wyoming-South Dakota. U.S. Geol. Surv. Bull., v.499, p.1-66. doi: 10.3133/b499   DOI
50 Ward, C.R., Spears, D., Booth, C.A., Staton, I. and Gurba, L.W. (1999). Mineral matter and trace elements in coals of the Gunnedah Basin, New South Wales, Australia. Int. J. Coal Geol., v.40(4), p.281-308. doi: 10.1016/s0166-5162(99)00006-3   DOI
51 Zhang, W., Rezaee, M., Bhagavatula, A., Li, Y., Groppo, J. and Honaker, R. (2015). A review of the occurrence and promising recovery methods of rare earth elements from coal and coal byproducts. Int. J. Coal Prep. Util., v.35(6), p.295-330. doi: 10.1080/19392699.2015.1033097   DOI
52 Dai, S., Li, T., Jiang, Y., Ward, C.R., Hower, J.C., Sun, J., Liu, J., Song, H., Wei, J. and Li, Q., Xie, P. and Huang, Q. (2015). Mineralogical and geochemical compositions of the Pennsylvanian coal in the Hailiushu Mine, Daqingshan Coalfield, Inner Mongolia, China: Implications of sediment-source region and acid hydrothermal solutions. Int. J. Coal Geol., v.137, p.92-110. doi: 10.1016/j.apgeochem.2003.12.008   DOI
53 Valiev, Y.Y., Goffen, G. and Pachadzhanov, D. (2002). Gold in Jurassic coals in the mountainous framing of the Tajik Basin and its prospecting significance. Geochemistry International, v.40(1), p.96-99.
54 Zhang, W., Noble, A., Yang, X. and Honaker, R. (2020). A comprehensive review of rare earth elements recovery from coal-related materials. Minerals, v.10(5), p.451. doi: 10.3390/min10050451   DOI
55 Zhuang, X., Querol, X., Zeng, R., Xu, W., Alastuey, A., Lopez-Soler, A. and Plana, F. (2000). Mineralogy and geochemistry of coal from the Liupanshui mining district, Guizhou, south China. Int. J. Coal Geol., v.45(1), p.21-37. doi: 10.1016/s0166-5162(00)00019-7   DOI
56 Palmer, C. and Cameron, C. (1989). The occurrence of gold and arsenic in Sumatra, Indonesia, peat deposits. J. Coal Qual, v.8(3-4), p.122.
57 Lyons, P.C., Outerbridge, W.F., Triplehorn, D., Evans Jr, H.T., Congdon, R.D., Capiro, M., Hess, J. and Nash, W.P. (1992). An Appalachian isochron: a kaolinized Carboniferous air-fall volcanicash deposit (tonstein). Geol. Soc. Am. Bull., v.104(11), p.1515-1527. doi: 10.1130/0016-7606(1992)104%3C1515:aaiakc%3E2.3.co;2   DOI
58 Mardon, S.M. and Hower, J.C. (2004). Impact of coal properties on coal combustion by-product quality: examples from a Kentucky power plant. Int. J. Coal Geol., v.59(3-4), p.153-169. doi: 10.1016/j.coal.2004.01.004   DOI
59 Mashkovtsev, G.A., Kochenov, A.V. and Khaldei, A.E. (1995). On hydrothermal sedimentary formation of stratiform uranium deposits in Phanerozoic depressions. Rare-metal-Uranium Ore Formation within Sedimentary Rocks., Nauka, Moscow, p.37-51.
60 Park, S.-W. (1990). Petrology and geochemistry of coals in Samcheog and Chungnam coalfields. Seoul National University. Ph.D Thesis., 142p.
61 Seredin, V. (1998). Rare earth mineralization in late Cenozoic explosion structures (Khankai massif, Primorskii Krai, Russia). Geol. Ore Deposits, v.40.
62 Seredin, V. (2005). Rare earth elements in germanium-bearing coal seams of the Spetsugli deposit (Primor'e Region, Russia). Geol. Ore Deposits, v.47.
63 Seredin, V. and Shpirt, M.Y. (1999). Rare earth elements in the humic substance of metalliferous coal. Lithology and Mineral Resources C/C of Litologiia I Poleznye Iskopaemye, v.34, p.244-248.
64 Chi, R. and Tian, J. (2008). Weathered crust elution-deposited rare earth ores. Nova Science Publishers. New York, 288p.
65 Bao, Z. and Zhao, Z. (2008). Geochemistry of mineralization with exchangeable REY in the weathering crusts of granitic rocks in South China. Ore Geol. Rev., v.33(3-4), p.519-535. doi: 10.1016/j.oregeorev.2007.03.005   DOI
66 Boyle, R. (1977). Cupriferous bogs in the Sackville area, New Brunswick, Canada. J. Geochem. Explor., v.8(3), p.495-527. doi: 10.1016/0375-6742(77)90094-2   DOI
67 Cannon, H.L. (1955). Geochemical relations of zinc-bearing peat to the Lockport dolomite, Orleans County, New York. USGS Bull., p.119-185. doi: 10.3133/b1000d
68 Hower, J.C., Berti, D., Hochella Jr, M.F. and Mardon, S.M. (2018). Rare earth minerals in a "no tonstein" section of the Dean (Fire Clay) coal, Knox County, Kentucky. Int. J. Coal Geol., v.193, p.73-86. doi: 10.1016/j.coal.2018.05.001   DOI
69 Zhao, L., Dai, S., Graham, I.T., Li, X., Liu, H., Song, X., Hower, J.C. and Zhou, Y. (2017). Cryptic sediment-hosted critical element mineralization from eastern Yunnan Province, southwestern China: Mineralogy, geochemistry, relationship to Emeishan alkaline magmatism and possible origin. Ore Geol. Rev., v.80, p.116-140. doi: 10.1016/j.oregeorev.2016.06.014   DOI
70 Dai, S., Ren, D., Hou, X. and Shao, L. (2003). Geochemical and mineralogical anomalies of the late Permian coal in the Zhijin coalfield of southwest China and their volcanic origin. Int. J. Coal Geol., v.55(2-4), p.117-138. doi: 10.1016/s0166-5162(03)00083-1   DOI
71 Kler, V., Nenakhova, V., Saprykin, F.Y., Shpirt, M., Rokhlin, L., Kulachkova, A. and Iovchev, R. (1988). Metallogeny and geochemistry of coal-bearing and pyroschistbearing sequences. Concentration of Elements and methods of their Study. Nauka, Moscow, 256p.
72 Laudal, D.A., Benson, S.A., Addleman, R.S. and Palo, D. (2018). Leaching behavior of rare earth elements in Fort Union lignite coals of North America. Int. J. Coal Geol., v.191, p.112-124. doi: 10.1016/j.coal.2018.03.010   DOI
73 Park, S.-U., Kim, J.-K., Seo, Y.-S., Hong, J.-S., Lee, H.-B. and Lee, H.-D. (2015). Evaluation of some rare metals and rare earth metals contained in coal ash of coal-fired power plants in Korea. Resources Recycling, v.24(4), p.67-75. doi: 10.7844/kirr.2015. 24.4.67   DOI
74 Dai, S., Li, D., Chou, C.-L., Zhao, L., Zhang, Y., Ren, D., Ma, Y. and Sun, Y. (2008). Mineralogy and geochemistry of boehmiterich coals: new insights from the Haerwusu Surface Mine, Jungar Coalfield, Inner Mongolia, China. Int. J. Coal Geol., v.74(3-4), p.185-202. doi: 10.1016/j.coal.2008.01.001   DOI
75 Dai, S. and Finkelman, R.B. (2018). Coal as a promising source of critical elements: Progress and future prospects. Int. J. Coal Geol., v.186, p.155-164. doi: 10.1016/j.coal.2017.06.005   DOI
76 Dai, S., Finkelman, R.B., French, D., Hower, J.C., Graham, I.T. and Zhao, F. (2021). Modes of occurrence of elements in coal: A critical evaluation. Earth-Sci. Rev., v.222, 103815. doi: 10.1016/j.earscirev.2021.103815   DOI
77 Dai, S., Jiang, Y., Ward, C.R., Gu, L., Seredin, V.V., Liu, H., Zhou, D., Wang, X., Sun, Y. and Zou, J. and Ren, D. (2012). Mineralogical and geochemical compositions of the coal in the Guanbanwusu Mine, Inner Mongolia, China: Further evidence for the existence of an Al (Ga and REE) ore deposit in the Jungar Coalfield. Int. J. Coal Geol., v.98, p.10-40. doi: 10.1016/j.coal.2012.03.003   DOI
78 Dai, S., Li, D., Ren, D., Tang, Y., Shao, L. and Song, H. (2004). Geochemistry of the late Permian No. 30 coal seam, Zhijin Coalfield of Southwest China: influence of a siliceous low-temperature hydrothermal fluid. Appl. Geochem., v.19(8), p.1315-1330. doi: 10.1016/j.apgeochem.2003.12.008   DOI
79 Arbuzov, S. and Mashen'kin, V. (2007). Oxidation zone of coalfields as a promising source of noble and rare metals: a case of coalfields in Central Asia. Problems and Outlook of Development of Mineral Resources and Fuel-Energetic Enterprises of Siberia, p.26-31.
80 Arbuzov, S., Ershov, V., Rikhvanov, L. and Rikhvanov, L. (2003). Rare-Metal Potential of Coals in the Minusa Basin. Acad. Sci. (Siberian Division): Novosibirsk, Russia, 347p.
81 Armands, G. (1961). Geochemical prospecting of a uraniferous bog deposit at Masugnsbyn, northern Sweden. In: Kvalheim, A. (Ed.), Geochemical Prospecting in Fennoscandia, p.127-154.
82 Panov, B.S., Alekhin, V.I. and Yushin, A.A. (2001). Gold-bearing coals of the Dnieper brown coal basin. Geol. Coal Dep., v.11, p.248-252.
83 Crowley, S.S., Stanton, R.W. and Ryer, T.A. (1989). The effects of volcanic ash on the maceral and chemical composition of the C coal bed, Emery Coal Field, Utah. Organ. Geochem., v.14(3), p.315-331. doi: 10.1016/0146-6380(89)90059-4   DOI
84 Birk, D. and White, J.C. (1991). Rare earth elements in bituminous coals and underclays of the Sydney Basin, Nova Scotia: Element sites, distribution, mineralogy. Int. J. Coal Geol., v.19(1-4), p.219-251. doi: 10.1016/0166-5162(91)90022-b   DOI
85 Chalmers, D. (1990). Brockman multi-metal and rare earth deposit. Geology of the mineral deposits of Australia and Papua New Guinea, v.1, p.707-709.
86 Denson, N.M. (1959). Uranium in coal in the western United States (Vol. 1055). US Government Printing Office. 315p. doi: 10.3133/b1055