Browse > Article
http://dx.doi.org/10.5352/JLS.2022.32.12.971

Biological Treatment of Piggery Liquid Manure by Malodor Reducing Bacteria  

Quan, Xiao-Tian (Department of Biological Sciences, School of Life Sciences, Nantong University)
Shin, Jae-Hyeong (Department of Animal Science and Technology, Konkuk University)
Wang, Yan-Qing (Department of Animal Science and Technology, Konkuk University)
Choi, Min-Gyung (Department of Animal Science and Technology, Konkuk University)
Kim, Sang-Min (Yeoju City Agricultural Technology Extension Center)
Kim, Soo-Ki (Department of Animal Science and Technology, Konkuk University)
Publication Information
Journal of Life Science / v.32, no.12, 2022 , pp. 971-978 More about this Journal
Abstract
Sulfur-oxidizing, ammonium-oxidizing, and nitrogen-oxidizing media were used to isolate bacteria to degrade malodor gas effectively in piggery manure or soil. Twelve different strains were isolated: Paenibacillus amylolyticus, Rhodococcus jostii, Rhodococcus qingshengii, Rhodococcus opacus, Alcaligenes faecalis, Alcaligenes faecalis, Kastia adipate, Kastia adipata, Microbacterium oxydans, Halomonas campisalis, Acinetobacter oleivorans, and Micrococcus luteus. By inoculating each strain in the piggery liquid manure by 1%, the pH in most strain treatments was maintained at 8.0. Total bacterial counts were maintained at 7.3~7.9 log CFU/ml until 15 days, and then they dropped dramatically down to 5.1~5.5 log CFU/ml. On the 30th day, the treatment group inoculated with Rhodococcus opacus SK2659 showed a relatively high level of ammonium nitrogen removal, which was 39% of that of the control group. When Rhodococcus opacus SK2659 was inoculated, H2S concentration after 100 days was 3.23% compared with the control (no inoculation), suggesting that Rhodococcus opacus SK2659 is an excellent strain for removing malodor gas. The gas production of the treatments was lower than that of the control. The total accumulated amount of gas production in most strain treatments was a quarter of the gas production compared to the control throughout the experimental periods. Acinetobacter oleivorans SK2675 showed the lowest level at 12.39% compared to the control in gas production. In conclusion, the use of mixture strains, such as Rhodococcus opacus SK2659 and Acinetobacter oleivorans SK2675 isolated in this study could increase the efficacy of malodor gas reduction in the biological treatment of piggery manure.
Keywords
Gas production; $H_2S$; malodor reducing bacteria; $NH_4{^+}$-N; piggery liquid mannure;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Alves, L. M. C., De Souza, J. A. M., de Mello Varani, A. and de Macedo Lemos, E. G. 2014. The family rhizobiaceae. by E. Rosenberg, EF DeLong, S. Lory, et al. Berlin, Heidelberg: Springer. 419-437.
2 Bajagain, R., Gautam, P., Le, T. T. N., Dahal, R. H., Kim, J. and Jeong, S. W. 2022. Isolation and screening of odor-reducing microbes from swine manure and its role in reducing ammonia release in combination with surfactant foam. Appl. Sci. 12, 1806.   DOI
3 Chaney, A. and Marbach, E. 1962. Modified reagents for the determination of ammonium and urea. Clin. Chem. 8, 130-132.   DOI
4 Evans, L., VanderZaag, A. C., Sokolov, V., Balde, H., MacDonald, D., Wagner-Riddle, C. and Gordon, R. 2018. Ammonia emissions from the field application of liquid dairy manure after anaerobic digestion or mechanical separation in Ontario, Canada. Agric. For. Meteorol. 258, 89-95.   DOI
5 Zhu, P., Shen, Y., Pan, X., Dong, B., Zhou, J., Zhang, W. and Li, X. 2021. Reducing odor emissions from feces aerobic composting: additives. RSC Adv. 11, 15977-15988.   DOI
6 Zommiti, M., Chikindas, M. L. and Ferchichi, M. 2020. Probiotics-live biotherapeutics: a story of success, limitations and future prospects-not only for humans. Probiotics Antimicrob. Proteins 12, 1266-1289.   DOI
7 National Research Council (US) Committee on Acute Exposure Guideline Levels. 2008.. Acute Exposure Guideline Levels for Selected Airborne Chemicals: Volume 6. Washington (DC): National Academies Press (US); PMID: 25032325.
8 Jolicoeur, P. and Morin, A. 1987. Isolation of Acinetobacter calcoaceticus strains degrading the volatile fatty acids of swine wastes. Biol. Wastes 19, 133-140.   DOI
9 Kirimura, K., Furuya, T., Sato, R., Ishii, Y., Kino, K. and Usami, S. 2002. Biodesulfurization of naphthothiophene and benzothiophene through selective cleavage of carbonsulfur bonds by Rhodococcus sp. strain WU-K2R. Appl. Environ. Microbiol. 68, 3867-3872.   DOI
10 Liu, Y., Wang, Y., Li, Y., An, H. and Lv, Y. 2015. Nitrogen removal characteristics of heterotrophic nitrification-aerobic denitrification by Alcaligenes faecalis C16. Chin. J. Chem. Eng. 23, 827-834.   DOI
11 Rayne, N. and Aula, L. 2020. Livestock manure and the impacts on soil health: A review. Soil Systems 4, 64.   DOI
12 Im, W. T., Yokota, A., Kim, M. K. and Lee, S. T. 2004. Kaistia adipata gen. nov., sp. nov., a novel α-proteobacterium. J. Gen. Appl. Microbiol. 50, 249-254.   DOI
13 Bagge, E., Persson, M. and Johansson, K. E. 2010. Diversity of spore-forming bacteria in cattle manure, slaughterhouse waste and samples from biogas plants. J. Appl. Microbiol. 109, 1549-1565.   DOI
14 Seo, M. C., Kuroda, K., Hanajima, D. and Haga, K. 1998. Effect of thermophilic ammonium tolerant bacteria on malodors emission of composting of pig manure. Kor. J. Soil Scie. Ferl. 31, 77-84.
15 Singh, R., Kim, K., Park, G., Kang, S., Park, T., Ban, J., Park, T., Ban, J., Choi, S., Song, J., Yu, D., Woo, J., Choi, Y. and Lee, T. 2021. Seasonal and spatial variations of atmospheric ammonia in the urban and suburban environments of Seoul, Korea. Atmosphere 12, 1607.   DOI
16 Choi, K. K., Park, C. H., Kim, S. Y., Lyoo, W. S., Lee, S. H. and Lee, J. W. 2004. Polyvinyl alcohol degradation by Microbacterium barkeri KCCM 10507 and Paenibacillus amylolyticus KCCM 10508 in dyeing wastewater. J. Microbiol. Biotechnol. 14, 1009-1013.
17 Rattanapan, C., Kantachote, D., Yan, R. and Boonsawang, P. 2010. Hydrogen sulfide removal using granular activated carbon biofiltration inoculated with Alcaligenes faecalis T307 isolated from concentrated latex wastewater. Int. Biodeterior. Biodegradation 64, 383-387.   DOI
18 Wang, G., Wang, M., Li, T., Liang, C. and Li, E. 2020. Isolation, identification and determination of dominant desulfurizing bacterial strains from chicken manure. J. Biotech. Res. 11, 66-72.
19 Aira, M., Monroy, F. and Dominguez, J. 2007. Eisenia fetida (Oligochaeta: Lumbricidae) modifies the structure and physiological capabilities of microbial communities improving carbon mineralization during vermicomposting of pig manure. Microb. Ecol. 54, 662-671.   DOI
20 Atlas, R. M. 2004. Handbook of microbiological media. CRC press.
21 Bollmann, A., Bar-Gilissen, M. J. and Laanbroek, H. J. 2002. Growth at low ammonium concentrations and starvation response as potential factors involved in niche differentiation among ammonia-oxidizing bacteria. Appl. Environ. Microbiol. 68, 4751-4757.   DOI
22 Bourque, D., Bisaillon, J. G., Beaudet, R., Sylvestre, M., Ishaque, M. and Morin, A. 1987. Microbiological degradation of malodorous substances of swine waste under aerobic conditions. Appl. Environ. Microbiol. 53, 137-141.   DOI
23 Lee, E. Y. and Lim, J. S. 2010. Current status and perspectives of livestock environment improving agents for the characteristics and control of swine manure odor. Kor. J. Microbiol. Biotechnol. 38, 244-254.
24 Guo, Y., Zhou, X., Li, Y., Li, K., Wang, C., Liu, J., Yan D., Liu, Y., Yang, D. and Xing, J. 2013. Heterotrophic nitrification and aerobic denitrification by a novel Halomonas campisalis. Biotechnol. Lett. 35, 2045-2049.   DOI
25 Hirschler, A., Carapito, C., Maurer, L., Zumsteg, J., Villette, C., Heintz, D., Dahl, C., Al-Nayal, A., Sangal, V., Mahmoud, H., Dorsselaer, A. V. and Ismail, W. 2021. Biodesulfurization induces reprogramming of sulfur metabolism in Rhodococcus qingshengii IGTS8: Proteomics and untargeted metabolomics. Microbiol. Spectr. 9, e00692-21.
26 Inbar, Y., Chen, Y. and Hadar, Y. 1990. Humic substances formed during the composting of organic matter. Soil Sci. Soc. Am. J. 54, 1316-1323.   DOI
27 Johnson, N. C., Ogbamgba, V. M. and Mbachiantim, J. T. 2021. The use of additives to control malodour generations in animal production, Particularly Swine. Eur. J. Sci. Innov. Technol. 1, 68-71.
28 Kang, K. H., Kam, S. K., Hu, C. G. and Lee, M. G. 2006. The effect of reduction of contaminants and odor according to the additives in the anaerobic maturation process of piggery slurry. J. Environ. Sci. 15, 169-175.
29 Kim, Y. H., Kong, M. S., Lee, E. J., Lee, T. G. and Jung, G. B. 2019. Status and changes in chemical properties of upland soil from 2001 to 2017 in Korea. Kor. J. Environ. Agric. 38, 213-218.   DOI
30 Koh, I. H., Yu, C., Park, M. J. and Ji, W. H. 2019. Reduction of soil loss from sloped agricultural Field by using hydrated lime. J. Soil Ground Water Environ. 24, 1-7.
31 Li, W., Cai, Z. Y., Duo, Z. J., Lu, Y. F., Gao, K. X., Abbas, G., Zhang, M. and Zheng, P. 2017. Heterotrophic ammonia and nitrate bio-removal over nitrite (Hanbon): performance and microflora. Chemosphere 182, 532-538.   DOI
32 Martzoukou, O., Glekas, P. D., Avgeris, M., Mamma, D., Scorilas, A., Kekos, D., Amillis, S. and Hatzinikolaou, D. G. 2022. Interplay between sulfur assimilation and biodesulfurization activity in Rhodococcus qingshengii IGTS8: Insights into a regulatory role of the reverse transsulfuration pathway. mBio 13, e00754-22.
33 Monse, C., Sucker, K., Hoffmeyer, F., Jettkant, B., Berresheim, H., Bunger, J. and Bruning, T. 2016. The influence of humidity on assessing irritation threshold of ammonia. BioMed Res. Int. 2016, 6015761.
34 Padappayil, R. P. and Borger, J. 2022. Ammonia toxicity. In StatPearls [Internet] StatPearls Publishing.
35 Schulte, H., Ammon, C., Hagenkamp-Korth, F. and Hartung, E. 2022. Investigating the time-dependent dose-response relationship of ammonia emissions reduction through the application of a urease inhibitor in pig fattening houses. J. Biosystemseng. 222, 45-61.
36 Sun, S., Abdellah, Y. A. Y., Miao, L., Wu, B., Ma, T., Wang, Y., Zang, H., Zhao, X. and Li, C. 2022. Impact of microbial inoculants combined with humic acid on the fate of estrogens during pig manure composting under low-temperature conditions. J. Hazard. Mater. 424, 127713.   DOI
37 Tiquia, S. M. 2002. Evolution of extracellular enzyme activities during manure composting. J. Appl. Microbiol. 92, 764-775.   DOI
38 Wang, H., Zeng, X., Zhang, X., Liu, H. and Xing, H. 2021. Ammonia exposure induces oxidative stress and inflammation by destroying the microtubule structures and the balance of solute carriers in the trachea of pigs. Ecotoxicol. Environ. Saf. 212, 111974.   DOI
39 Chapin, A., Boulind, C. and Moore, A. 1998. Controlling odor and gaseous emission problems from industrial swine facilities. A Handbook for All Interested Parties.
40 Zhu, F., Hong, C., Wang, W., Lyu, H., Zhu, W., Xv, H. and Yao, Y. 2020. A microbial agent effectively reduces ammonia volatilization and ensures good maggot yield from pig manure composted via housefly larvae cultivation. J. Clean. Prod. 270, 122373.   DOI
41 Wang, Y. C., Han, M. F., Jia, T. P., Hu, X. R., Zhu, H. Q., Tong, Z., Lin, Y. T., Wang, C., Liu, D. Z., Peng, Y. Z., Wang, G., Meng, J., Zhai, Z. X., Zhang, Y., Deng, J. G. and His, H. C. 2021. Emissions, measurement and control of odor in livestock farms: A review. Sci. Total Environ. 776, 145735.   DOI
42 Lee, M., Wi, J., Koziel, J. A., Ahn, H., Li, P., Chen, B., Meiirkhanuly, Z., Banik, C. and Jenks, W. 2020. Effects of UV-A light treatment on ammonia, hydrogen sulfide, greenhouse gases and ozone in simulated poultry barn conditions. Atmosphere 11, 283.   DOI
43 Sorkhoh, N. A., Ali, N., Salamah, S., Eliyas, M., Khanafer, M. and Radwan, S. S. 2010. Enrichment of rhizospheres of crop plants raised in oily sand with hydrocarbon-utilizing bacteria capable of hydrocarbon consumption in nitro- gen free media. Int. Biodeterior. Biodegradation 64, 659-664.   DOI
44 Szanto, G. L., Hamelers, H. V. M., Rulkens, W. H. and Veeken, A. H. M. 2007. NH3, N2O and CH4 emissions during passively aerated composting of straw-rich pig manure. Bioresour. Technol. 98, 2659-2670.   DOI
45 Szokol, J., Rucka, L., Simcikova, M., Halada, P., Nesvera, J. and Patek, M. 2014. Induction and carbon catabolite repression of phenol degradation genes in Rhodococcus erythropolis and Rhodococcus jostii. Appl. Microbiol. Biotechnol. 98, 8267-8279.   DOI
46 Vanotti, M. B., Szogi, A. A., Millner, P. D. and Loughrin, J. H. 2009. Development of a second-generation environ- mentally superior technology for treatment of swine manure in the USA. Bioresour. Technol. 100, 5406-5416.   DOI
47 Yoon, D. H., Kang, D. W. and Nam, K. W. 2009. The effect of yeast(Saccharomyces exiguus SJPAF1) on odor emission and contaminants reduction in piggery slurry. Kor. J. Environ. Agric. 28, 47-52.   DOI
48 Ron, E. and Rosenberg, E. 2010. Acinetobacter and alkanindiges. In Handbook of Hydrocarbon and lipid microbiology.
49 Li, B., Lv, R., Xiao, Y., Hu, W., Mai, Y., Zhang, J., Lin L. and Hu, X. 2019. A novel nitrite-base aerobic denitrifying bacterium Acinetobacter sp. YT03 and its transcriptome analysis. Front. Microbiol. 10, 2580.   DOI