• Title/Summary/Keyword: 산화내구성

Search Result 176, Processing Time 0.028 seconds

The Preparation and Characteristics of Covalently Cross-Linked SPEEK/Cs-TPA/Ceria Composite Membranes for Water Electrolysis (수전해용 공유가교 SPEEK/Cs-TPA/Ceria 복합막의 제조 및 특성 연구)

  • Song, Minah;Ha, Sungin;Park, Deayong;Ryu, Cheolhwi;Moon, Sangbong;Kang, Ansoo;Chung, Janghoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.5
    • /
    • pp.437-447
    • /
    • 2012
  • Ceria ($CeO_2$) was used to scavenge free radicals which attack the membrane in the polymer electrolyte membrane water electrolysis (PEMWE) circumstance and to increase the duration of the membrane. In order to improve the electrochemical, mechanical and electrocatalytic characteristics, engineering plastic of the sulfonated polyether ether ketone (SPEEK) as polymer matrix was prepared in the sulfonation reaction of polyether ether ketone (PEEK) and the organic-inorganic blended composite membranes were prepared by sol-gel casting method with loading the highly dispersed ceria and cesium-substituted tungstophosphoric acid (Cs-TPA) with cross-linking agent contents of 0.01 mL. In conclusion, CL-SPEEK/Cs-TPA/ceria (1%) membrane showed the optimum results such as 0.130 S/cm of proton conductivity at $80^{\circ}C$, 2.324 meq./g-dry-membrane of ion exchange capacity and mechanical characteristics, and 65.03 MPa of tensile strength which were better than Nafion 117 membrane.

Analytical Modelling for Recarbonation Process of Concrete Repaired with Patching Repair Material (단면복구재로 보수된 콘크리트의 재탄산화 과정에 대한 분석적 모델링)

  • Do, Jeong-Yun;Kim, Doo-Kie;Song, Hun;Jo, Young-Kug
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.2
    • /
    • pp.89-96
    • /
    • 2010
  • This study presented the analytical evaluation model effective in the concrete structure repaired with a patching material. The model considered the effect of the repair material on carbon dioxide penetration into the repaired concrete as evaluating the remaining service life of the CO2-deteriorated concrete structure after repair. The diffusion profiles of carbon dioxide as well as the carbonated concrete were effectively able to be modelled with analytical method based on Fick's 1st diffusion law. The evaluation of the model equation showed the good result and rational process quantitatively and numerically to evaluate the remaining service life of the repaired concrete structure after repair.

A Detection Method of Resistive Leakage Current Flowing through ZnO Arrester Blocks (산화아연 피뢰기소자에 흐르는 저항분 누설전류의 검출기법)

  • 이복희;강성만
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.3
    • /
    • pp.67-73
    • /
    • 2001
  • This paper resents a developed measuring device of resistive leakage current and a fundamental discussion of deterioration diagnosis for Zinc Oxide(ZnO) arrester blocks. We have developed the leakage current detection device for ageing test and durability evaluation for ZnO arrester blocks. The resistive leakage current can be used as an indicator to discriminate whether the ZnO arrester blocks is in good state or in bad. The resistive leakage current measuring system with the compensation circuit was designed and fabricated. The sauce tests for ZnO arrester blocks were investigated by observing the resistive leakage current together with fast Fourier transform analysis. The proposed monitoring systems for the resistive leakage current can effectively be used to investigate the electrophysical properties of ZnO arrester blocks in laboratory and to develop the techniques of forecasting the deterioration of ZnO arresters in electric power systems.

  • PDF

Performance and Operational Characteristics of Natural Gas Fuel Processor for 1kW Class PEMFCs (1kW급 고분자 연료전지용 통합형 천연가스 개질 수소 제조 시스템의 성능 및 운전 특성)

  • Seo, Yu-Taek;Seo, Dong-Joo;Seo, Young-Seog;Roh, Hyun-Seog;Jeong, Jin-Hyeok;Yoon, Wang-Lai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.17-20
    • /
    • 2006
  • 한국에너지기술연구원에서는 가정용 고분자연료전지 열병합 발전시스템을 위한 통합형 천연가스 연료처리 시스템을 개발해 왔다. 가정용 시스템으로서 필수적인 소형화와 고효율을 현실화하기 위해, 연료처리 시스템의 각 단위 공정 즉 수증기 개질, 수성가스 전이, 선택적 산화 공정 등을 이중 동 심관형 반응기에 통합하여 상호 열교환이 용이하도록 반응기를 설계하였다. 현재 시험 운전 중인 Prototype-I 연료 처리 시스템은 1kW급 고분자 연료전지 열병합 발전 시스템에 개질 가스를 공급하기 위해 설계되었으며, 기초 성능은 정격 부하 운전시 열효율 78% (HHV 기준), 메탄 전환율 91%이다. 개질 가스 내 일산화탄소 농도는 고분자 연료전지 전극의 피독을 피하기 위해 10ppm 이하로 유지되어야 하며, Prototype-I 연료 처리 시스템은 백금과 루테늄 촉매를 적용한 선택적 산화 반응기를 통해 개질 가스 내 일산화탄소 농도를 10ppm 이하로 제거하였다. 일반 가정에서는 고분자 연료전지 시스템의 부하 변동이 예상되기 때문에 연료 처리 시스템의 부하 변동 운전 특성도 살펴보았다 정격 부하에서 80%, 60%, 40%로 부하를 변동하며 운전하였고, 각 부하에서 안정한 메탄 전환율과 10ppm이하의 일산화탄소 농도를 보였다. 80%까지는 열효율이 77%로 큰 변화를 보이지 않았으며, 60%에서는 76%, 40%에서는 72%로 열효율이 감소하는 현상을 보였다 연료 처리 시스템의 일일 시동-정지 운전시 내구성을 테스트 중이다. 현재까지 50여회의 일일-시동 정지를 시도하였다 시동 후 약 세 시간가량의 정력 부하 운전을 실시한 후 부하 변동을 실시하였고, 총 운전 시간 8시간 정도 운전한 후 시스템을 정지하였다 메탄 전환율과 일산화 탄소 농도, 열효율을 모니터링 하고 있으며, 현재까지 초기 성능을 그대로 유지하고 있다. 앞으로 일일시동-정지 운전 시험을 지속하면서 초기 시동 특성 및 부하 변동에 따른 응답 특성 개선, 그리고 연료전지와의 연계 운전을 실시할 예정이다

  • PDF

Experimental Study on Evaluation of Bond Strength after Ozone Treatment and Ozone Resistance of Concrete Metal Spray Coating for Advanced Water Treatment (고도정수처리용 콘크리트 금속용사 피막의 내오존성 및 오존처리 후 부착강도 평가에 관한 실험적 연구)

  • Park, Jin-Ho;Jang, Hyun-O;Lee, Han-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.68-75
    • /
    • 2018
  • The introduction of advanced water treatment facilities has increased as the conventional purification method cannot remove the substance clearly. However, the internal waterproofing and Anticorrosion materials of the advanced water treatment facility using ozone deteriorate due to the oxidation power of ozone and affects the concrete, which causes a decrease in durability. This study is to evaluate the ozone resistance according to the type of spray metal and the surface treatment method of the coating, and the bond strength after ozone treatment in order to develope a finishing method to prevent deterioration of concrete structure of water treatment facility using metal spraying method as a way to construct metal panel with excellent ozone resistance and chemical resistance by an easier way than the previous. The Experimental results show that spray metal Ti has superior ozone resistance even after spraying. It is considered to be the most suitable method for ozone resistance and bond performance by finishing using Teflon sealing as surface treatment method.

The Effect of STPP on Compressive Strength of Sodium Silicate-Cement Grout (STPP가 규산계 시멘트 주입재의 강도에 미치는 영향)

  • Chun, Byungsik;Yang, Hyungchil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.4
    • /
    • pp.25-34
    • /
    • 2006
  • Portland cement and sodium silicate are widely used as the main components of the injection, which are used to prevent flow and improve ground condition. The main problem of the injection material is the leaching of the sodium hydroxite and silicate due to the limited reaction with the cement. This paper studies the effect of cement hydration retarder on the compressive strength of the sodium silicate - cement gel. A series of tests, including digital-type testing machine, X-ray diffraction and scanning electron microscope are performed. Results clearly demonstrate that the sodium tripolyphosphate, which is the cement hydration retarder in the test, significantly improves the initial strength of the homogel.

  • PDF

Preparation and Characterization of Covalently Cross-linked SPEEK/Cellulose Composite Membranes with Various Cross Linkage Contents for Water Electrolysis (탄화수소계열 수전해용 공유가교 SPEEK/Cellulose 복합막의 다양한 함량의 가교제에 따른 제조 및 특성)

  • KIM, BOYOUNG;KIM, MINJIN;YOON, YOUNGYO;MOON, SANG-BONG;CHUNG, JANG-HOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.5
    • /
    • pp.411-418
    • /
    • 2018
  • The polymer electrolyte membranes, CL-SPEEK/Cellulose composite membrane I, II, III with the improved electrochemical and mechanical properties were prepared and characterized. The engineering plastic polyether ether ketone (PEEK) and cellulose were sulfonated and cross-linked. The membranes were prepared by sol-gel casting method with different amount of cross-linking reagent. In conclusion, the composite membranes I, II, III showed improved thermostability, tensile strength and oxidative durability. Proton conductivity of the membranes was also improved and the composite membrane I showed 0.1312 S/cm at $80^{\circ}C$ which was the best of those composite membranes.

Nitrogen-doped Nickel Oxide Catalysts for Oxygen-Evolution Reactions (알칼라인 조건에서의 산소발생반응을 위한 N-doped NiO 촉매)

  • Lee, Jin Goo;Jeon, Ok Sung;Shul, Yong Gun
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.701-705
    • /
    • 2019
  • Oxygen-evolution reaction (OER) in alkaline media has been considered as a key process for various energy applications. Many types of catalysts have been developed to reduce high overpotential in OER, such as metal alloys, metal oxides, perovskite, or spinel. Nickel oxide (NiO) has high potential to increase OER activity according to volcano plots. The exact mechanisms for OER has not been discovered, but defects such as cation or anion vacancy typically act as an active site for diverse electrochemical reactions. In this study, nitrogen was doped into NiO by using ethylenediamine for formation of Ni vacancy, and the effects of N doping on OER activity and stability was studied.

Reinforced Anion-exchange Membranes Employing Porous PTFE Support for All-vanadium Redox Flow Battery Application (전 바나듐 레독스 흐름전지 응용을 위한 다공성 PTFE 지지체를 사용한 강화 음이온교환막)

  • Moon, Ha-Nuel;Song, Hyeon-Bee;Kang, Moon-Sung
    • Membrane Journal
    • /
    • v.31 no.5
    • /
    • pp.351-362
    • /
    • 2021
  • All-vanadium redox flow battery (VRFB) is one of the promising high-capacity energy storage technologies. The ion-exchange membrane (IEM) is a key component influencing the charge-discharge performance and durability of VRFB. In this study, a pore-filled anion-exchange membrane (PFAEM) was fabricated by filling the pores of porous polytetrafluoroethylene (PTFE) support with excellent physical and chemical stability to compensate for the shortcomings of the existing hydrocarbon-based IEMs. The use of a thin porous PTFE support significantly lowered the electrical resistance, and the use of the PTFE support and the introduction of a fluorine moiety into the filling ionomer significantly improved the oxidation stability of the membrane. As a result of the evaluation of the charge-discharge performance, the higher the current efficiency was seen by increasing the fluorine content in the PFAEM, and the superior voltage and energy efficiencies were shown owing to the lower electrical resistance compared to the commercial membrane. In addition, it was confirmed that the use of a hydrophobic PTFE support is more preferable in terms of oxidation stability and charge-discharge performance.

An Experimental Study of Synthesis and Characterization of Vanadium Oxide Thin Films Coated on Metallic Bipolar Plates for Cold-Start Enhancement of Fuel Cell Vehicles (연료전지 차량의 냉시동성 개선을 위한 금속 분리판 표면의 바나듐 산화물 박막 제조 및 특성 분석에 관한 연구)

  • Jung, Hye-Mi;Noh, Jung-Hun;Im, Se-Joon;Lee, Jong-Hyun;Ahn, Byung-Ki;Um, Suk-Kee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.6
    • /
    • pp.585-592
    • /
    • 2011
  • The enhancement of the cold-start capability of polymer electrolyte fuel cells is of great importance in terms of the durability and reliability of fuel-cell vehicles. In this study, vanadium oxide films deposited onto the flat surface of metallic bipolar plates were synthesized to investigate the feasibility of their use as an efficient self-heating source to expedite the temperature rise during startup at subzero temperatures. Samples were prepared through the dip-coating technique using the hydrolytic sol-gel route, and the chemical compositions and microstructures of the films were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, and field-emission scanning electron microscopy. In addition, the electrical resistance hysteresis loop of the films was measured over a temperature range from -20 to $80^{\circ}C$ using a four-terminal technique. Experimentally, it was found that the thermal energy (Joule heating) resulting from self-heating of the films was sufficient to provide the substantial amount of energy required for thawing at subzero temperatures.