Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2021.31.5.351

Reinforced Anion-exchange Membranes Employing Porous PTFE Support for All-vanadium Redox Flow Battery Application  

Moon, Ha-Nuel (Department of Green Chemical Engineering, Sangmyung University)
Song, Hyeon-Bee (Department of Green Chemical Engineering, Sangmyung University)
Kang, Moon-Sung (Department of Green Chemical Engineering, Sangmyung University)
Publication Information
Membrane Journal / v.31, no.5, 2021 , pp. 351-362 More about this Journal
Abstract
All-vanadium redox flow battery (VRFB) is one of the promising high-capacity energy storage technologies. The ion-exchange membrane (IEM) is a key component influencing the charge-discharge performance and durability of VRFB. In this study, a pore-filled anion-exchange membrane (PFAEM) was fabricated by filling the pores of porous polytetrafluoroethylene (PTFE) support with excellent physical and chemical stability to compensate for the shortcomings of the existing hydrocarbon-based IEMs. The use of a thin porous PTFE support significantly lowered the electrical resistance, and the use of the PTFE support and the introduction of a fluorine moiety into the filling ionomer significantly improved the oxidation stability of the membrane. As a result of the evaluation of the charge-discharge performance, the higher the current efficiency was seen by increasing the fluorine content in the PFAEM, and the superior voltage and energy efficiencies were shown owing to the lower electrical resistance compared to the commercial membrane. In addition, it was confirmed that the use of a hydrophobic PTFE support is more preferable in terms of oxidation stability and charge-discharge performance.
Keywords
all-vanadium redox flow battery; ion-exchange membrane; charge-discharge performance; pore-filled anion-exchange membrane; porous polytetrafluoroethylene support;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Naoi, E. Iwama, N. Ogihara, Y. Nakamura, H. Segawa, and Y. Ino, "Nonflammable hydrofluoroether for lithium-ion batteries: Enhanced rate capability, cyclability, and low-temperature performance", J. Electrochem. Soc., 156, A272 (2009).   DOI
2 M. Bartolozzi, "Development of redox flow batteries. A historical bibliography", J. Power Sources, 27, 219 (1989).   DOI
3 T. Mohammadi, M. Skyllas-Kazacos, "Modification of anion-exchange membranes for vanadium redox flow battery applications", J. Power Sources, 63, 179 (1996).   DOI
4 P. Costamagna, S. Srinivasan, "Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000 Part I. Fundamental scientific aspects", J. Power Sources, 102, 242 (2001).   DOI
5 X. Li, G. Zhang, D. Xu, C. Zhao, and H. Na, "Morphology study of sulfonated poly(ether ether ketone ketone)s (SPEEKK) membranes: The relationship between morphology and transport properties of SPEEKK membranes", J. Power Sources, 165, 701 (2007).   DOI
6 S.-J. Seo, B.-C. Kim, K.-W. Sung, J. Shim, J.-D. Jeon, K.-H. Shin, S.-H. Shin, S.-H. Yun, J.-Y. Lee, and S.-H. Moon, "Electrochemical properties of pore-filled anion exchange membranes and their ionic transport phenomena for vanadium redox flow battery applications", J. Membr. Sci., 428, 17 (2013).   DOI
7 X. Fan, X. Ji, F. Han, J. Yue, J. Chen, L. Chen, T. Deng, J. Jiang, and C. Wang, "Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery", Sci. Adv., 4, 1 (2018).
8 Z. Wang, J. Parrondo, S. Sankarasubramanian, K. Bhattacharyya, M. Ghosh, and V. Ramani, "Alkaline stability of pure aliphatic-based anion exchange membranes containing cycloaliphatic quaternary ammonium cations", J. Electrochem. Soc., 167, 124504 (2020).   DOI
9 H. Wang, Y. Wen, H. Peng, C. Zheng, Y. Li, S. Wang, S. Sun, X. Xie, and X. Zhou, "Grafting polytetrafluoroethylene micropowder via in situ electron beam irradiation-induced polymerization", Polymers, 10, 503 (2018).   DOI
10 G. Ruppert, R. Bauer, and G. Heisler, "The photo-Fenton reaction - an effective photochemical wastewater treatment process", J. Photochem. Photobiol. A: Chem., 73, 75 (1993).   DOI
11 X. Li, X. Hao, D. Xu, G. Zhang, S. Zhong, H. Na, and D. Wang, "Fabrication of sulfonated poly (ether ether ketone ketone) membranes with high proton conductivity", J. Membr. Sci., 281, 1 (2006).   DOI
12 M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla, and J. E. Mc Grath, "Alternative polymer systems for proton exchange membranes (PEMs)", Chem. Rev., 104, 4587 (2004).   DOI
13 J. Noack, N. Roznyatovskaya, T. Herr, and P. Fischer, "The chemistry of redox-flow batteries", Angew. Chem. Int. Ed., 54, 9775 (2015).
14 S. C. Chieng, M. Kazacos, and M. Skyllas-Kazacos, "Preparation and evaluation of composite membrane for vanadium redox battery applications", J. Power Sources, 39, 11 (1992).   DOI
15 T. Mohammadi, M. Skyllas-Kazacos, "Evaluation of the chemical stability of some membranes in vanadium solution", J. Appl. Electrochem., 27, 153 (1997).   DOI
16 D. Chen, M. A. Hickner, E. Agar, and E. C. Kumbur, "Optimized anion exchange membranes for vanadium redox flow batteries", ACS Appl. Mater. Interfaces, 5, 7559 (2013).   DOI
17 X. Li, Z. Wang, H. Lu, C. Zhao, H. Na, and C. Zhao, "Electrochemical properties of sulfonated PEEK used for ion exchange membranes", J. Membr. Sci., 254, 147 (2005).   DOI
18 B. Smitha, S. Sridhar, and A. A. Khan, "Solid polymer electrolyte membranes for fuel cell applications - a review", J. Membr. Sci., 259, 10 (2005).   DOI
19 W. Wei, H. Zhang, X. Li, Z. Mai, and H. Zhang, "Poly(tetrafluoroethylene) reinforced sulfonated poly (ether ether ketone) membranes for vanadium redox flow battery application", J. Power Sources, 208, 421 (2012).   DOI
20 D. Chen and M. A. Hickner, "Degradation of imidazolium- and quaternary ammonium-functionalized poly(fluorenyl ether ketone sulfone) anion exchange membranes", ACS Appl. Mater. Interfaces, 4, 5775 (2012).   DOI
21 A. A. Shah, H. Al-Fetlawi, and F. C. Walsh, "Dynamic modelling of hydrogen evolution effects in the all-vanadium redox flow battery", Electrochim. Acta, 55, 1125 (2010).   DOI
22 X. Li, H. Zhang, Z. Mai, H. Zhang, and I. Vankelecom, "Ion exchange membranes for vanadium redox flow battery (VRB) applications", Energy Environ. Sci., 4, 1147 (2011).   DOI
23 N. Ohmi, T. Nakajima, Y. Ohzawa, M. Koh, A. Yamauchi, M. Kagawa, and H. Aoyama, "Effect of organo-fluorine compounds on the thermal stability and electrochemical properties of electrolyte solutions for lithium ion batteries", J. Power Sources, 221, 6, (2013).   DOI
24 V. Herman, H. Takacs, F. Duclairoir, O. Renault, J. H. Tortaic, and B. Viala, "Core double-shell cobalt/graphene/polystyrene magnetic nanocomposites synthesized by in situ sonochemical polymerization", RSC Adv., 5, 51371 (2015).   DOI
25 M. Skyllas-Kazacos, M. H. Chakrabarti, S. A. Haijmolana, F. S. Mjalli, and M. Saleem, "Progress in flow battery research and development", J. Electrochem. Soc., 158, R55 (2011).   DOI
26 J. P. Barton and D. G. Infield, "Energy storage and its use with intermittent renewable energy", IEEE Trans. Energy Conversion, 19, 441 (2004).   DOI
27 H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li, and Y. Ding, "Progress in electrical energy storage system: A critical review", Prog. Nat. Sci., 19, 291 (2009).   DOI
28 P. Alotto, M. Guarnieri, and F. Moro, "Redox flow batteries for the storage of renewable energy: A review", Renew. Sustain. Energy Rev., 29, 325 (2014).   DOI
29 X. Ma, H. Zhang, and F. Xing, "A three-dimensional model for negative half cell of the vanadium redox flow battery", Electrochim. Acta, 58, 238 (2011).   DOI
30 C.-H. Bae, E. P. L Roberts, and R. A. W. Dryfe, "Chromium redox couples for application to redox flow batteries", Electrochim. Acta, 48, 279 (2002).   DOI
31 L. Gomez-Coma, V. M. Ortiz-Martinez, J. Carmona, L. Palacio, P. Pradanos, M. Fallanza, A. Ortiz, R. Ibanez, and I. Ortiz, "Modeling the influence of divalent ions on membrane resistance and electric power in reverse electrodialysis", J. Membr. Sci., 592, 117385 (2019).   DOI
32 D.-H. Kim, Y.-E. Choi, J.-S. Park, and M.-S. Kang, "Development and application of cation-exchange membranes including chelating resin for efficient heavy-metal ion removal", Membr. J., 27, 129 (2017).   DOI
33 Z. Palaty, and H. Bendova, "Numerical effort analysis of mass transfer measurements in batch dialyzer", Desalin. Water Treat. 26, 215 (2011).   DOI
34 D-H. Kim, Y-E. Choi, J-S. Park, and M-S. Kang, "Capacitive deionization employing pore-filled cation-exchange membranes for energy-efficient removal of multivalent cations", Electrochim. Acta, 295, 164 (2019).   DOI
35 V. Fernao Pires, E. Romero-Cadaval, D. Vinnikov, I. Roasto, and J. F. Martins, "Power converter interfaces for electrochemical energy storage systems - A review", Energy Convers. Manag., 86, 453 (2014).   DOI
36 S. Lee, H. Lee, T.-H. Yang, B. Bae, N. A. T. Tran, Y. Cho, N. Jung, and D. Shin, "Quaternary ammonium-bearing perfluorinated polymers for anion exchange membrane applications", Membranes, 10, 306 (2020).   DOI
37 R. Tang, Y. Zhang, Y. Zhang, Z. Yu, "Synthesis and characterization of chitosan based dye containing quaternary ammonium group", Carbohydrate Polymers, 139, 191 (2016).   DOI
38 S. Ghosh, K. Dhole, M. K. Tripathy, R. Kumar, and R. S. Sharma, "FTIR spectroscopy in the characterization of the mixture of nuclear grade cation and anion exchange resins", J. Radioanal Nucl. Chem., 304 917 (2015).   DOI
39 T. Achiha, T. Nakajima, Y. Ohzawa, M. Koh, A. Yamauchi, M. Kagawa, and H. Aoyama, "Thermal stability and electrochemical properties of fluorine compounds as nonflammable solvents for lithium-ion batteries", J. Electrochem. Soc., 157, A707 (2010).   DOI
40 C. Ponce de Leon, A. Frias-Ferrer, J. GonzalezGarcia, D. A. Szanto, and F. C. Walsh, "Redox flow cells for energy conversion", J. Power Sources, 160, 716 (2006).   DOI
41 A. Z. Weber, M. M. Mench, J. P. Meyers, P. N. Ross, J. T. Gostick, and Q. Liu, "Redox flow batteries: a review", J. Appl. Electrochem., 41, 1137 (2011).   DOI
42 G-J. Hwang, A-S. Kang, and H. Ohya, "Review of the redox-flow secondary battery", Chem. Industry and Technology, 16, 455 (1998).
43 M. Rychick and M. Skyllas-Kazacos, "Characteristics of a new all-vanadium redox flow battery", J. Power Sources, 22, 59 (1988).   DOI