• Title/Summary/Keyword: 산포해석

Search Result 32, Processing Time 0.028 seconds

Statistical Analysis of the Springback Scatter according to the Material Strength in the Sheet Metal Forming Process (판재성형공정에서의 소재 강도에 따른 스프링백 산포의 통계분석)

  • Son, Min-Kyu;Kim, Se-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.4
    • /
    • pp.287-292
    • /
    • 2022
  • In this paper, the stochastic distribution of the springback amount is investigated for the stamping process of a U-channel shaped-product with ultra-high strength steel. Using the reliability-based design optimization technique (RBDO), stochastic distribution of process parameters is considered in the analysis including material properties and process variation. Quantification of the springback scatters is carried out with the statistical analysis method according to the material strength. It is found that the scattering amount of springback decreases while the amount of springback increases as the tensile strength of the blank material increases, which is investigated by analyzing the strain and stress distribution of the punch and die shoulder. It is noted that the proposed scheme is capable of predicting and responding to the unavoidable scattering of springback in the sheet metal forming process.

Characteristic Analysis of Particulate Composites According to a Random Microstructure (랜덤 미세구조에 따른 입자 복합재료의 특성분석)

  • Park, Cheon;Kang, Young-Jin;Noh, Yoojeong;Lim, O-Kaung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.1
    • /
    • pp.23-30
    • /
    • 2017
  • Since shape, size and distribution of particles in particulate composites have spreaded characteristics, properties of particulate composites have variation and also system behavior using particulate composites have variation. However, it is difficult to consider spreaded characteristic of particles so that a system behavior is analysed using homogeneous techniques or using microstructure in local areas. In this study, for considering random variation of particles, RMDFs(random morphology description functions) are used to generate random microstructure and relationship between the number of gaussian functions and spreaded characteristic of particles was analysed using the geometrical moment of area. Also, multi-scale analysis was carried out for cantilever beam with full-random microstructure to study behavior of particulate composites structure. As a result, it is defined that spreaded characteristic of particles and the variation of deflections of cantilever beam are decreased as the number of Gaussian functions(N) is increased and converges at N=200.

Test and Numerical Analysis for Penetration Residual Velocity of Bullet Considering Failure Strain Uncertainty of Composite Plates (복합판재의 파단 변형률 불확실성을 고려한 탄 관통 잔류속도에 대한 시험 및 수치해석)

  • Cha, Myungseok;Lee, Minhyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.3
    • /
    • pp.281-288
    • /
    • 2016
  • The ballistic performance data of composite materials is distributed due to material inhomogeneity. In this paper, the uncertainty in residual velocity is obtained experimentally, and a method of predicting it is established numerically for the high-speed impact of a bullet into laminated composites. First, the failure strain distribution was obtained by conducting a tensile test using 10 specimens. Next, a ballistic impact test was carried out for the impact of a fragment-simulating projectile (FSP) bullet with 4ply ([0/90]s) and 8ply ([0/90/0/90]s) glass fiber reinforced plastic (GFRP) plates. Eighteen shots were made at the same impact velocity and the residual velocities were obtained. Finally, simulations were conducted to predict the residual velocities by using the failure strain distributions that were obtained from the tensile test. For this simulation, two impact velocities were chosen at 411.7m/s (4ply) and 592.5m/s (8ply). The simulation results show that the predicted residual velocities are in close agreement with test results. Additionally, the modeling of a composite plate with layered solid elements requires less calculation time than modeling with solid elements.

Analytical Modeling and Design of the High Voltage Current Sensing MOSFET (고압용 전류 검지 MOSFET의 해석적 모델링 및 설계)

  • Yun, Chong-Man;Jeon, Kwan-Yeon;Im, Pil-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1289-1291
    • /
    • 1997
  • 전류 센싱 MOSFET의 센싱 셀과 메인 셀의 온저항 모델을 달리 세워 원자재 산포에 따른 소자의 특성 산포 분량의 원인을 규명하였다. 에피의 농도와 두께가 증가할수록 센싱 셀의 온저항이 메인셀보다 작아지며 농도와 두께의 변화가 있을때의 온저항 변화율도 작은것으로 나타났다. 원자재 산포에 의한 SENSE FET 특성 산포를 줄이기 위해서는 정사각형 형태의 SENSE cell 배치가 효과적이며 센스 셀과 메인 셀의 간섭을 방지하기 위해서는 센싱 저항을 센스 셀의 온저항의 1/10 이하로 설계하고 간격이 최소한 에피 두께 이상이 되어야함을 밝혔다.

  • PDF

Robust Design Optimization of the Vehicle Ride Comfort Considering Variation of the Design Parameters (설계변수의 산포를 고려한 차량 승차감의 강건최적설계)

  • Song, Pil-Gon;Spiriyagin, Maksym;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.12
    • /
    • pp.1217-1223
    • /
    • 2008
  • Vehicle vibration mostly originates from the road excitation and causes discomfort, fatigue and even injury to a driver. Vehicle ride comfort is one of the most important performance indices to achieve a high-quality vehicle design. Since design parameter variations inevitably result in the vehicle ride comfort variance, the variance characteristics should be analyzed in the early design stage of the vehicle. The vehicle ride comfort is often defined by an index which employs a weighted RMS value of the acceleration PSD of a seat position. The design solution is obtained through two steps in this study. An optimization problem to obtain a minimum ride comfort index is solved first. Then another optimization problem to obtain minimum variance of the ride comfort index is solved. For the optimization problems, the equations of motion and the sensitivity equations are derived basing on a 5-DOF vehicle model. The numerical results show that an optimal solution for the minimum ride comfort is not necessarily same as that of the minimum variance of the ride comfort.

Performance Uncertainty Estimation of a Nonlinear Vibration System Based on a Sampling Method (샘플 추출방법에 근거한 비선형 진동계의 성능 불확실성 예측)

  • Choi, Chan-Kyu;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.113-118
    • /
    • 2009
  • A designer regards the vibration system as a linear system. However, in real world, nonlinearity of a vibration system should exist caused by various factors like manufacturing conditions or uncertain material properties. So, properties of a spring and a damper which are consisting the vibration system have statistical distribution. Therefore, a designer needs to analyze the statistical nonlinearity in a vibration system. In this paper, $1^{st}$ Taylor series expansion method and univariate dimension reduction method apply to a performance measure of nonlinear vibration system, and compare each result. And then, merits and demerits of each method are discussed. For apply more actual problem, a performance measure population is estimated based on design variable samples like properties of spring or damper.

  • PDF

Statistical Performance Estimation of a Multibody System Based on Design Variable Samples (설계변수 표본에 근거한 다물체계 성능의 통계적 예측)

  • Choi, Chan-Kyu;Yoo, Hong-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.12
    • /
    • pp.1449-1454
    • /
    • 2009
  • The performance variation of a multibody system is affected by a variation of various design variables of the system. And the effects of design variable variations on the performance variation must be considered in design of a multibody system. Accordingly, a variation analysis of a multibody system needs to be conducted in design of a multibody system. For a variation analysis of a performance, population mean and variance which are called statistical parameters of design variables are needed. However, an evaluation of statistical parameters of design variables is impossible in many practical cases. Therefore, an estimation of statistical parameters of the performance based on sample mean and variance which are called statistic of design variables is needed. In this paper, the variation analysis method for a multibody system based on design variable samples was proposed. And, using the proposed method, a variation analysis of the vehicle ride comfort based on sample statistic of design variables was conducted.

A Reliability Study on Estimating Shear Strength of Marine Soil using CPT (Cone 관입시험을 이용한 해양토질의 전단강도 산정에 대한 신뢰도 연구)

  • 이인모;이명재
    • Geotechnical Engineering
    • /
    • v.3 no.2
    • /
    • pp.17-28
    • /
    • 1987
  • Reliability of the cone penetration test (CPT) for estimating shear strength of marine soils is investigated in this paper. For sands, the uncertainty about the angle of internal friction is analyzed. It includes the spatial variation of the soil and the model error in the equation used for interpretation. The most serious uncertainty encountered was the error in the interpretative models. Different methods of interpretation gave quite different values. Subjective opinion was introduced to combine all the interpretative models in a systematic manner. For clays, the undrained Shear Strength from the CPT results is usually =derived by empirical correlations between cone resistance and untrained shear strength from laboratory tests or field vane tests, expressed in terms of cone factor and function of overburden pressure. The uncertainty of the undrained shear strength is caused by data scatter of the cone factor in the correlation, model error of the cone factor, effect of anisotropy, and spatial variability of cone resistance. Among these uncertainties, the most serious one was the data scatter of the cone factor in the .correlation. Between the laboratory test and the field vane test used for correlation, the field vane test was more reliable.

  • PDF

Discrete element analysis for design modification of leveling blade on motor grader vehicle (모터 그레이더 평탄작업용 블레이드의 설계개선을 위한 개별요소법 해석)

  • Song, Chang-Heon;Oh, Joo-Young;Cho, Jung-Woo;Kim, Mun-Gyu;Seok, Jeong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.423-438
    • /
    • 2021
  • The blade of motor grader is used for scattering and leveling the aggregates on the foundation of road construction site. The paper performed a design improvement research of the blade part to enhance the working efficiency of motor graders. The scattering works of aggregates by blade driving were simulated by DEM (discrete element method) of a dynamic code. The four design parameters were selected and a specific leveling scenario for the simulation was determined. The nine blade models were numerically experimented, and the sensitivity of each factors was analyzed. Next, the design factors that influence a blade performance have been selected by ANOVA, and these key design factors were applied to the progressive quadratic response surface method (PQRSM). The optimum set of design factors of the blade was finally proposed.